Academia.eduAcademia.edu

Secret key rates for an encoded quantum repeater

Physical Review A

Abstract

We investigate secret key rates for the quantum repeater using encoding [L. Jiang et al., Phys. Rev. A 79, 032325 (2009)] and compare them to the standard repeater scheme by Briegel, D\"ur, Cirac, and Zoller. The former scheme has the advantage of a minimal consumption of classical communication. We analyze the trade-off in the secret key rate between the communication time and the required resources. For this purpose, we introduce an error model for the repeater using encoding which allows for input Bell states with a fidelity smaller than one, in contrast to the model given in [L. Jiang et al., Phys. Rev. A 79, 032325 (2009)]. We show that one can correct additional errors in the encoded connection procedure of this repeater and develop a suitable decoding algorithm. Furthermore, we derive the rate of producing entangled pairs for the quantum repeater using encoding and give the minimal parameters (gate quality and initial fidelity) for establishing a nonzero secret key. We f...