Academia.eduAcademia.edu

Single random walker on disordered lattices

1984, Journal of Statistical Physics

Abstract

Random walks on square lattice percolating clusters were followed for up to 2 • 10 ~ steps. The mean number of distinct sites visited (SN) gives a spectral dimension of d s = 1.30 5:0.03 consistent with superuniversality (d S = 4/3) but closer to the alternative ds= 182/139, based on the low dimensionality correction. Simulations are also given for walkers on an energetically disordered lattice, with a jump probability that depends on the local energy mismatch and the temperature. An apparent fractal behavior is observed for a low enough reduced temperature. Above this temperature, the walker exhibits a "crossover" from fractal-to-Euclidean behavior. Walks on two-and three-dimensional lattices are similar, except that those in three dimensions are more efficient.