Academia.eduAcademia.edu

(pdf)

Abstract

In order to determine the points at which meeting discourse changes from one topic to another, probabilistic models were used to approximate the process through which meeting transcripts were produced. Gibbs sampling was used to estimate the values of random variables in the models, including the locations of topic boundaries. This paper shows how discourse features were integrated into the Bayesian model and reports empirical evaluations of the benefit obtained through the inclusion of each feature and of the suitability of alternative models of the placement of topic boundaries. It demonstrates how multiple cues to segmentation can be combined in a principled way, and empirical tests show a clear improvement over previous work.