Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
…
16 pages
1 file
It would be nice if science answered all questions about our universe. In the past, mathematics has not just provided the language in which to frame suitable scientific answers, but was also able to give us clear indications of its own limitations. The former was able to deliver results via an ad hoc interface between theory and experiment. But to characterise the power of the scientific approach, one needs a parallel higher-order understanding of how the working scientist uses mathematics, and the development of an informative body of theory to clarify and expand this understanding. We argue that this depends on us selecting mathematical models which take account of the 'thingness' of reality, and puts the mathematics in a correspondingly rich informationtheoretic context. The task is to restore the role of embodied computation and its hierarchically arising attributes. The reward is an extension of our understanding of the power and limitations of mathematics, in the mathematical context, to that of the real world. Out of this viewpoint emerges a widely applicable framework, with not only epistemological, but also ontological consequences -one which uses Turing invariance and its putative breakdowns to confirm what we observe in the universe, to give a theoretical status to the dichotomy between quantum and relativistic domains, and which removes the need for many-worlds and related ideas. In particular, it is a view which confirms that of many quantum theorists -that it is the quantum world that is 'normal', and our classical level of reality which is strange and harder to explain. And which complements fascinating work of Cristian Calude and his collaborators on the mathematical characteristics of quantum randomness, and the relationship of 'strong determinism' to computability in nature.
2019
Ever since its foundations were laid nearly a century ago, quantum theory has provoked questions about the very nature of reality. We address these questions by considering the universe – and the multiverse – fundamentally as complex patterns, or mathematical structures. Basic mathematical structures can be expressed more simply in terms of emergent parameters. Even simple mathematical structures can interact within their own structural environment, in a rudimentary form of self-awareness, which suggests a definition of reality in a mathematical structure as simply the complete structure. The absolute randomness of quantum outcomes is most satisfactorily explained by a multiverse of discrete, parallel universes. Some of these have to be identical to each other, but that introduces a dilemma, because each mathematical structure must be unique. The resolution is that the parallel universes must be embedded within a mathematical structure – the multiverse – which allows universes to be...
Axiomathes
Ever since its foundations were laid nearly a century ago, quantum theory has provoked questions about the very nature of reality. We address these questions by considering the universe-and the multiverse-fundamentally as complex patterns, or mathematical structures. Basic mathematical structures can be expressed more simply in terms of emergent parameters. Even simple mathematical structures can interact within their own structural environment, in a rudimentary form of selfawareness, which suggests a definition of reality in a mathematical structure as simply the complete structure. The absolute randomness of quantum outcomes is most satisfactorily explained by a multiverse of discrete, parallel universes. Some of these have to be identical to each other, but that introduces a dilemma, because each mathematical structure must be unique. The resolution is that the parallel universes must be embedded within a mathematical structure-the multiverse-which allows universes to be identical within themselves, but nevertheless distinct, as determined by their position in the structure. The multiverse needs more emergent parameters than our universe and so it can be considered to be a superstructure. Correspondingly, its reality can be called a super-reality. While every universe in the multiverse is part of the super-reality, the complete super-reality is forever beyond the horizon of any of its component universes.
Décio Krause, 2023
The purpose of this paper is to argue that neither mathematics nor logic can be applied 'directly' to reality, but to our rational representations (or reconstructions) of it, and this is extended to scientific theories in general. The difference to other approaches (e.g., Nancy Cartwright's, Bueno & Colyvan's or Hughes') is that I call attention to something more than it is involved in such a process, namely, metamathematics. A general schema of 'elaboration' of theories, which I suppose cope with most of them, is presented and discussed. A case study is outlined, the quantum case, whose anchored description, in my opinion, demands a different metamathematics and a different logic.
The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the rest of reality requires, I believe, that we consider how space itself relates to reality, and how other so-called "spaces" used in physics relate to reality. In chapter 2, I compare space and space-time to other spaces used in physics, such as configuration space, phase space and Hilbert space. I support what is known as the "property view" of space, opposing both the traditional views of space and space-time, substantivalism and relationism. I argue that all these spaces are property spaces. After examining the relationships of these spaces to causality, I argue that configuration space has, due to its role in quantum mechanics, a special status in the microscopic world similar to the status of position space in the macroscopic world. In chapter 3, prespace itself is considered. One way of approaching this structure is through the comparison of the prespace structure with a computational system, in particular to a cellular automaton, in which space or space-time and all other physical quantities are broken down into discrete units. I suggest that one way open for a prespace metaphysics can be found if physics is made fully discrete in this way. I suggest as a heuristic principle that the physical laws of our world are such that the computational cost of implementing those laws on an arbitrary computational system is minimized, adapting a heuristic principle of this type proposed by Feynman. In chapter 4, some of the ideas of the previous chapters are applied in an examination of the physics and metaphysics of quantum theory. I first discuss the "measurement problem" of quantum mechanics: this problem and its proposed solution are the primary subjects of chapter 4. It turns out that considering how quantum theory could be made fully discrete leads naturally to a suggestion of how standard linear quantum mechanics could be modified to give rise to a solution to the measurement problem. The computational heuristic principle reinforces the same solution. I call the modified quantum mechanics Critical Complexity Quantum Mechanics (CCQM). I compare CCQM with some of the other proposed solutions to the measurement problem, in particular the spontaneous localization model of Ghirardi, Rimini and Weber. Finally, in chapters 5 and 6, I argue that the measure of complexity of quantum mechanical states I introduce in CCQM also provides a new definition of entropy for quantum mechanics, and suggests a solution to the problem of providing an objective foundation for statistical mechanics, thermodynamics, and the arrow of time.
2017
Modern physics is based on two big pillars, the theory of relativity and quantum mechanics; the first describes the macro-cosmos, the second one the micro-cosmos. With the relativity we have witnessed a revolution of concepts of space and time, with quantum physics very unusual weird and out of any classical logic phenomena have been and are being discovered, with all implications at ontological level in relation to the nature of reality. The features of quantum mechanics are seen as puzzling, but also as a resource to be developed, rather than a problem to be solved. It gave rise not only to interpretative puzzles, but also to new concepts in computational environment and in information theory. In this paper, after a general introduction to quantum physics and its key concepts, I focus the attention on its various interpretations, on cosmological concepts like the creation of the universe, the concept of multiverse, the fine tuning, the intentionality, the quantum computation, the ...
arXiv: Quantum Physics, 1997
The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the rest of reality requires, I believe, that we consider how space itself relates to reality, and how other so-called “spaces” used in physics relate to reality. In the first chapter I compare space and space-time to other spaces used in physics, such as configuration space, phase space and Hilbert space. I support what is known as the “property view” of space, opposing both the traditional views of space and space-time, substantivalism and relationism. I argue that all these spaces are property spaces. After examining the relationships of t...
Foundations of Physics, 2005
As an approach to a Theory of Everything a framework for developing a coherent theory of mathematics and physics together is described. The main characteristic of such a theory is discussed: the theory must be valid and and sufficiently strong, and it must maximally describe its own validity and sufficient strength. The mathematical logical definition of validity is used, and sufficient strength is seen to be a necessary and useful concept. The requirement of maximal description of its own validity and sufficient strength may be useful to reject candidate coherent theories for which the description is less than maximal. Other aspects of a coherent theory discussed include universal applicability, the relation to the anthropic principle, and possible uniqueness. It is suggested that the basic properties of the physical and mathematical universes are entwined with and emerge with a coherent theory. Support for this includes the indirect reality status of properties of very small or very large far away systems compared to moderate sized nearby systems. Discussion of the necessary physical nature of language includes physical models of language and a proof that the meaning content of expressions of any axiomatizable theory seems to be independent of the algorithmic complexity of the theory. Gödel maps seem to be less useful for a coherent theory than for purely mathematical theories because all symbols and words of any language must have representations as states of physical systems already in the domain of a coherent theory.
I explore physics implications of the External Reality Hypothesis (ERH) that there exists an external physical reality completely independent of us humans. I argue that with a sufficiently broad definition of mathematics, it implies the Mathematical Universe Hypothesis (MUH) that our physical world is an abstract mathematical structure. I discuss various implications of the ERH and MUH, ranging from standard physics topics like symmetries, irreducible representations, units, free parameters, randomness and initial conditions to broader issues like consciousness, parallel universes and Gödel incompleteness. I hypothesize that only computable and decidable (in Gödel's sense) structures exist, which alleviates the cosmological measure problem and may help explain why our physical laws appear so simple. I also comment on the intimate relation between mathematical structures, computations, simulations and physical systems.
2015
Extraordinary mathematicality of physics is also shown by dimensionlessness of Planck spacetime and mass. At the same time the Planck granularity of spacetime also shows that physics can be simulated by a binary computer. So physics is informational. But mathematics is not everything in physics, consciousness cannot be solely explained by mathematics, and free will also not. The author claims also that consciousness without free will does not exist. Quantum mechanics (QM) is not complete, because foundational principle is not yet known, because consciousness and Quantum gravity (QG) are not yet explained, and because agreement between measurement and calculation is not everything. QG as dimensionless theory is the foundation of QM and not oppositely. The free will and quantum randomness are similar unexplained phenomena. Even philosophy is important in physics, because what mathematics cannot describe in physics is ontology. And, intuition affects what is mainstream physics. Simplic...
As an approach to a Theory of Everything a framework for developing a coherent theory of mathematics and physics together is described. The main characteristic of such a theory is discussed: the theory must be valid and and sufficiently strong, and it must maximally describe its own validity and sufficient strength. The mathematical logical definition of validity is used, and sufficient strength is seen to be a necessary and useful concept. The requirement of maximal description of its own validity and sufficient strength may be useful to reject candidate coherent theories for which the description is less than maximal. Other aspects of a coherent theory discussed include universal applicability, the relation to the anthropic principle, and possible uniqueness. It is suggested that the basic properties of the physical and mathematical universes are entwined with and emerge with a coherent theory. Support for this includes the indirect reality status of properties of very small or very large far away systems compared to moderate sized nearby systems. Discussion of the necessary physical nature of language includes physical models of language and a proof that the meaning content of expressions of any axiomatizable theory seems to be independent of the algorithmic complexity of the theory. Gödel maps seem to be less useful for a coherent theory than for purely mathematical theories because all symbols and words of any language must have representations as states of physical systems already in the domain of a coherent theory.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Social Science Research Network, 2020
Quantum Mechanics, Mathematics, Cognition and Action, 2002
… : Classical and Quantum Objects in Modern Physics, 1998
In Quantum and Consciousness Revisited. M.C. Kafatos, D. Banerji, and D. Struppa (editors). DK Publisher, New Delhi., 2024
Mind, Values, and Metaphysics, 2014
WORLD SCIENTIFIC eBooks, 2015
arXiv (Cornell University), 2016