Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2012, Protein Science
…
13 pages
1 file
Villin headpiece (HP67) is a small, autonomously-folding domain that has become a model system for understanding the fundamental tenets governing protein folding. In this communication, we explore the role that Leu61 plays in the structure and stability of the construct. Deletion of Leu61 results in a completely unfolded protein that cannot be expressed in Escherichia coli. Omission of only the aliphatic leucine side chain (HP67 L61G) perturbed neither the backbone conformation nor the orientation of local hydrophobic side chains. As a result, a large, solvent-exposed hydrophobic pocket, a negative replica of the leucine side-chain, was created on the surface. The loss of the hydrophobic interface between leucine 61 and the hydrophobic pocket destabilized the construct by ~3.3 kcal/mol. Insertion of a single glycine residue immediately before Leu61 (HP67 L61[GL]) was also highly destabilizing and had the effect of altering the backbone conformation (a-helix to p-helix) in order to precisely preserve the wild-type position and conformation of all hydrophobic residues, including Leu61. In addition to demonstrating that the hydrophobic side-chain of Leu61 is critically important for the stability of villin headpiece, our results are consistent with the notion that the precise interactions present within the hydrophobic core, rather than the hydrogen bonds that define the secondary structure, specify a protein’s fold.
Biochemistry, 2003
The villin headpiece folds autonomously in vitro forming three R-helical regions. Local propensities, however, strongly disfavor the formation of the C-terminal helix because most native residue pairs in that helix are hydrophobic/polar mismatches. Even the N-terminal helix is unfavored according to the AGADIR criterion. Our coarse-grained ab initio simulations reveal three-body correlations in which hydrophobic residues position to protect amide-carbonyl hydrogen bonds from attack by water, thus inducing the growth of the C-terminal helix and guiding the folding process. Similar correlations are also found in all-atom simulations with an implicit solvent model that accurately reproduces the results of simulations with explicit solvent molecules. The correlations establish a large-scale, many-body context that may be probed experimentally by introducing mutations of certain nonobvious residues that reside outside the native hydrophobic core but that are predicted to affect the folding rates and dynamics dramatically.
Journal of Molecular Graphics & Modelling, 2019
Existing computational models applied in the protein structure prediction process do not sufficiently account for the presence of the aqueous solvent. The solvent is usually represented by a predetermined number of H 2 O molecules in the bounding box which contains the target chain. The fuzzy oil drop (FOD) model, presented in this paper, follows an alternative approach, with the solvent assuming the form of a continuous external hydrophobic force field, with a Gaussian distribution. The effect of this force field is to guide hydrophobic residues towards the center of the protein body, while promoting exposure of hydrophilic residues on its surface. This work focuses on the following sample proteins: Engrailed homeodomain (RCSB: 1enh), Chicken villin subdomain hp-35, n68h (RCSB: 1yrf), Chicken villin subdomain hp-35, k65(nle), n68h, k70(nle) (RCSB: 2f4k), Thermostable subdomain from chicken villin headpiece (RCSB: 1vii), de novo designed single chain three-helix bundle (a3d) (RCSB: 2a3d), albuminbinding domain (RCSB: 1prb) and lambda repressor-operator complex (RCSB: 1lmb).
Biophysical Journal, 2002
Progressive structuring and ultimately exclusion of water by hydrophobes surrounding backbone hydrogen bonds turn the latter into guiding factors of protein folding. Here we demonstrate that an arrangement of five hydrophobes yields an optimal hydrogen-bond stabilization. This motif is shown to be nearly ubiquitous in native folds.
Proceedings of the National Academy of Sciences, 2005
Equilibrium Fourier transform infrared (FTIR) and temperature-jump (T-jump) IR spectroscopic techniques were used to study the thermodynamics and kinetics of the unfolding and folding of the villin headpiece helical subdomain (HP36), a small three-helix protein. A double phenylalanine mutant (HP36 F47L, F51L) that destabilizes the hydrophobic core of this protein also was studied. The double mutant is less stable than wild type (WT) and has been shown to contain less residual secondary structure and tertiary contacts in its unfolded state. The relaxation kinetics after a T-jump perturbation were studied for both HP36 and HP36 F47L, F51L. Both proteins exhibited biphasic relaxation kinetics in response to a T-jump. The folding times for the WT (3.23 μs at 60.2°C) and double phenylalanine mutant (3.01 μs at 49.9°C) at the approximate midpoints of their thermal unfolding transitions were found to be similar. The folding time for the WT was determined to be 3.34 μs at 49.9°C, similar to...
Nature Structural Biology, 2002
Proceedings of The National Academy of Sciences, 1998
A new approach in implementing classical molecular dynamics simulation for parallel computers has enabled a simulation to be carried out on a protein with explicit representation of water an order of magnitude longer than previously reported and will soon enable such simulations to be carried into the microsecond time range. We have used this approach to study the folding of the villin headpiece subdomain, a 36-residue small protein consisting of three helices, from an unfolded structure to a molten globule state, which has a number of features of the native structure. The time development of the solvation free energy, the radius of gyration, and the mainchain rms difference from the native NMR structure showed that the process can be seen as a 60-nsec ''burst'' phase followed by a slow ''conformational readjustment'' phase. We found that the burial of the hydrophobic surface dominated the early phase of the folding process and appeared to be the primary driving force of the reduction in the radius of gyration in that phase.
Protein …, 2006
Proceedings of the National Academy of Sciences, 1996
In the MYL mutant of the Arc repressor dimer, sets of partially buried salt-bridge and hydrogen-bond interactions mediated by Arg-31, Glu-36, and Arg-40 in each subunit are replaced by hydrophobic interactions between Met-31, Tyr-36, and Leu-40. The MYL refolding/dimerization reaction differs from that of wild type in being 10- to 1250-fold faster, having an earlier transition state, and depending upon viscosity but not ionic strength. Formation of the wild-type salt bridges in a hydrophobic environment clearly imposes a kinetic barrier to folding, which can be lowered by high salt concentrations. The changes in the position of the transition state and viscosity dependence can be explained if denatured monomers interact to form a partially folded dimeric intermediate, which then continues folding to form the native dimer. The second step is postulated to be rate limiting for wild type. Replacing the salt bridge with hydrophobic interactions lowers this barrier for MYL. This makes th...
Journal of Molecular Biology, 2003
The folding thermodynamics and kinetics of the α-spectrin SH3 domain with a redesigned hydrophobic core have been studied. The introduction of five replacements, A11V, V23L, M25V, V44I and V58L, resulted in an increase of 16% in the overall volume of the side-chains forming the hydrophobic core but caused no remarkable changes to the positions of the backbone atoms. Judging by the scanning calorimetry data, the increased stability of the folded structure of the new SH3-variant is caused by entropic factors, since the changes in heat capacity and enthalpy upon the unfolding of the wild-type and mutant proteins were identical at 298 K. It appears that the design process resulted in an increase in burying both the hydrophobic and hydrophilic surfaces, which resulted in a compensatory effect upon the changes in heat capacity and enthalpy. Kinetic analysis shows that both the folding and unfolding rate constants are higher for the new variant, suggesting that its transition state becomes more stable compared to the folded and unfolded states. The φ‡-U values found for a number of side-chains are slightly lower than those of the wild-type protein, indicating that although the transition state ensemble (TSE) did not change overall, it has moved towards a more denatured conformation, in accordance with Hammond's postulate. Thus, the acceleration of the folding–unfolding reactions is caused mainly by an improvement in the specific and/or non-specific hydrophobic interactions within the TSE rather than by changes in the contact order. Experimental evidence showing that the TSE changes globally according to its hydrophobic content suggests that hydrophobicity may modulate the kinetic behaviour and also the folding pathway of a protein.
Protein Science, 2002
Small autonomously folding proteins are of interest as model systems to study protein folding, as the same molecule can be used for both experimental and computational approaches. The question remains as to how well these minimized peptide model systems represent larger native proteins. For example, is the core of a minimized protein tolerant to mutation like larger proteins are? Also, do minimized proteins use special strategies for specifying and stabilizing their folded structure? Here we examine these questions in the 35-residue autonomously folding villin headpiece subdomain (VHP subdomain). Specifically, we focus on a cluster of three conserved phenylalanine (F) residues F47, F51, and F58, that form most of the hydrophobic core. These three residues are oriented such that they may provide stabilizing aromatic-aromatic interactions that could be critical for specifying the fold. Circular dichroism and 1D-NMR spectroscopy show that point mutations that individually replace any of these three residues with leucine were destabilized, but retained the native VHP subdomain fold. In pair-wise replacements, the double mutant that retains F58 can adopt the native fold, while the two double mutants that lack F58 cannot. The folding of the double mutant that retains F58 demonstrates that aromatic-aromatic interactions within the aromatic cluster are not essential for specifying the VHP subdomain fold. The ability of the VHP subdomain to tolerate mutations within its hydrophobic core indicates that the information specifying the three dimensional structure is distributed throughout the sequence, as observed in larger proteins. Thus, the VHP subdomain is a legitimate model for larger, native proteins.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
The International Journal of Physics, 2013
Nature Structural Biology, 2002
Journal of Biomolecular Structure and Dynamics, 2011
Proteins: Structure, Function, and Genetics, 2001
Protein Science, 1996
Protein Science, 2008
FEBS Letters, 2003
Journal of Biological Chemistry, 2000
Biotechnology Journal, 2011
Biochemistry, 1992
Parallel Computing, 2000
Journal of Molecular Biology, 2001
Journal of Molecular Biology, 2001
Journal of Molecular Biology, 2007
The Journal of Chemical Physics, 2002
Journal of Molecular Biology, 2005
The Journal of Chemical Physics, 2003