Academia.eduAcademia.edu

A Framework for Trajectory Data Warehousing

2008

Abstract

Technological advances in sensing technologies and wireless telecommunication devices enable novel research fields related to the management of trajectory data. As it usually happens in data management world, the challenge after storing the data is the implementation of appropriate analytics that could extract useful knowledge. However, traditional data warehousing systems and techniques were not designed for analyzing trajectory data. Thus, in this work, we investigate how the traditional data cube model is adapted to trajectory warehouses in order to transform raw location data into valuable information. In particular, we focus our research on three issues that are critical to trajectory data warehousing: (a) the trajectory reconstruction procedure that takes place in order to transform sampled location data originated e.g. from GPS recordings into trajectories and load them to a moving object database, (b) the ETL procedure that feeds a trajectory data warehouse, and (c) the aggregation of cube measures for OLAP purposes. We provide design solutions for all these issues and we test their applicability and efficiency in real world settings.