Academia.eduAcademia.edu

Room temperature accelerator structures for linear colliders

2001, PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268)

Abstract

Early tests of short low group velocity and standing wave structures indicated the viability of operating Xband linacs with accelerating gradients in excess of 100 MeV/m. Conventional scaling of traveling wave traveling wave linacs with frequency scales the cell dimensions with λ. Because Q scales as λ 1/2 , the length of the structures scale not linearly but as λ 3/2 in order to preserve the attenuation through each structure. For NLC we chose not to follow this scaling from the SLAC S-band linac to its fourth harmonic at X-band. We wanted to increase the length of the structures to reduce the number of couplers and waveguide drives which can be a significant part of the cost of a microwave linac. Furthermore, scaling the iris size of the disk-loaded structures gave unacceptably high short range dipole wakefields. Consequently, we chose to go up a factor of about 5 in average group velocity and length of the structures, which increases the power fed to each structure by the same factor and decreases the short range dipole wakes by a similar factor. Unfortunately, these longer (1.8 m) structures have not performed nearly as well in high gradient tests as the short structures. We believe we have at least a partial understanding of the reason and will discuss it below. We are now studying two types of short structures with large apertures with moderately good efficiency including: 1) traveling wave structures with the group velocity lowered by going to large phase advance per period with bulges on the iris, 2) π mode standing wave structures.