Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
One of the many successful applications of Gaussian Mixture Models (GMMs) is in image segmentation, where spatially constrained mixture models have been used in conjuction with the Expectation-Maximization (EM) framework. In this paper, we propose a new methodology for the M-step of the EM algorithm that is based on a novel constrained optimization formulation. Numerical experiments using simulated and real images illustrate the superior performance of our methodology in terms of the attained maximum value of the objective function and segmentation accuracy compared to previous implementations of this approach.
IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council, 2005
Gaussian mixture models (GMMs) constitute a well-known type of probabilistic neural networks. One of their many successful applications is in image segmentation, where spatially constrained mixture models have been trained using the expectation-maximization (EM) framework. In this letter, we elaborate on this method and propose a new methodology for the M-step of the EM algorithm that is based on a novel constrained optimization formulation. Numerical experiments using simulated images illustrate the superior performance of our method in terms of the attained maximum value of the objective function and segmentation accuracy compared to previous implementations of this approach.
2012
The Expectation-Maximization algorithm has been classically used to find the maximum likelihood estimates of parameters in probabilistic models with unobserved data, for instance, mixture models. A key issue in such problems is the choice of the model complexity. The higher the number of components in the mixture, the higher will be the data likelihood, but also the higher will be the computational burden and data overfitting. In this work we propose a clustering method based on the expectation maximization algorithm that adapts on-line the number of components of a finite Gaussian mixture model from multivariate data. Or method estimates the number of components and their means and covariances sequentially, without requiring any careful initialization. Our methodology starts from a single mixture component covering the whole data set and sequentially splits it incrementally during expectation maximization steps. The coarse to fine nature of the algorithm reduce the overall number of computations to achieve a solution, which makes the method particularly suited to image segmentation applications whenever computational time is an issue. We show the effectiveness of the method in a series of experiments and compare it with a state-of-the-art alternative technique both with synthetic data and real images, including experiments with images acquired from the iCub humanoid robot.
2008
Abstract. Recently stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. Also image segmentation means to divide one picture into different types of classes or regions, for example a picture of geometric shapes has some classes with different colors such as ’circle’, ’rectangle’, ’triangle’ and so on. Therefore we can suppose that each class has normal distribution with specify mean and variance. Thus in general a picture can be Gaussian mixture model. In this paper, we have learned Gaussian mixture model to the pixel of an image as training data and the parameter of the model are learned by EM-algorithm. Meanwhile pixel labeling corresponded to each pixel of true image is done by Bayes rule. This hidden or labeled image is constructed during of running EM-algorithm. In fact, we introduce a new numerically method of finding maximum a posterior estimation by using of EM-algorithm and Gau...
… Conference on Pattern …, 2010
In this paper, a parametric and unsupervised histogram-based image segmentation method is presented. The histogram is assumed to be a mixture of asymmetric generalized Gaussian distributions. The mixture parameters are estimated by using the Expectation Maximization algorithm. Histogram fitting and region uniformity measures on synthetic and real images reveal the effectiveness of the proposed model compared to the generalized Gaussian mixture model.
IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, 2010
A new Bayesian model is proposed for image segmentation based upon Gaussian mixture models (GMM) with spatial smoothness constraints. This model exploits the Dirichlet compound multinomial (DCM) probability density to model the mixing proportions (i.e., the probabilities of class labels) and a Gauss-Markov random field (MRF) on the Dirichlet parameters to impose smoothness. The main advantages of this model are two. First, it explicitly models the mixing proportions as probability vectors and simultaneously imposes spatial smoothness. Second, it results in closed form parameter updates using a maximum a posteriori (MAP) expectation-maximization (EM) algorithm. Previous efforts on this problem used models that did not model the mixing proportions explicitly as probability vectors or could not be solved exactly requiring either time consuming Markov Chain Monte Carlo (MCMC) or inexact variational approximation methods. Numerical experiments are presented that demonstrate the superiority of the proposed model for image segmentation compared to other GMM-based approaches. The model is also successfully compared to state of the art image segmentation methods in clustering both natural images and images degraded by noise.
IEEE Transactions on Medical Imaging, 2000
An automated algorithm for tissue segmentation of noisy, low-contrast magnetic resonance (MR) images of the brain is presented. A mixture model composed of a large number of Gaussians is used to represent the brain image. Each tissue is represented by a large number of Gaussian components to capture the complex tissue spatial layout. The intensity of a tissue is considered a global feature and is incorporated into the model through tying of all the related Gaussian parameters. The expectation-maximization (EM) algorithm is utilized to learn the parameter-tied, constrained Gaussian mixture model. An elaborate initialization scheme is suggested to link the set of Gaussians per tissue type, such that each Gaussian in the set has similar intensity characteristics with minimal overlapping spatial supports. Segmentation of the brain image is achieved by the affiliation of each voxel to the component of the model that maximized the a posteriori probability. The presented algorithm is used to segment three-dimensional, T1-weighted, simulated and real MR images of the brain into three different tissues, under varying noise conditions. Results are compared with state-of-the-art algorithms in the literature. The algorithm does not use an atlas for initialization or parameter learning. Registration processes are therefore not required and the applicability of the framework can be extended to diseased brains and neonatal brains.
Statistics and Computing, 2008
In this paper, we propose a model for image segmentation based on a finite mixture of Gaussian distributions. For each pixel of the image, prior probabilities of class memberships are specified through a Gibbs distribution, where association between labels of adjacent pixels is modeled by a class-specific term allowing for different interaction strengths across classes. We show how model parameters can be estimated in a maximum likelihood framework using Mean Field theory. Experimental performance on perturbed phantom and on real benchmark images shows that the proposed method performs well in a wide variety of empirical situations.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2010
Image segmentation is a critical low-level visual routine for robot perception. However, most image segmentation approaches are still too slow to allow real-time robot operation. In this paper we explore a new method for image segmentation based on the expectation maximization algorithm applied to Gaussian Mixtures. Our approach is fully automatic in the choice of the number of mixture components, the initialization parameters and the stopping criterion. The rationale is to start with a single Gaussian in the mixture, covering the whole data set, and split it incrementally during expectation maximization steps until a good data likelihood is reached. Singe the method starts with a single Gaussian, it is more computationally efficient that others, especially in the initial steps. We show the effectiveness of the method in a series of simulated experiments both with synthetic and real images, including experiments with the iCub humanoid robot.
2011
Abstract: The Expectation Maximization (EM) algorithm and the clustering method Fuzzy-C-Means (FCM) are widely used in image segmentation. However, the major drawback of these methods is their sensitivity to the noise. In this paper, we propose a variant of these methods which aim at resolving this problem. Our approaches proceed by the characterization of pixels by two features: the first one describes the intrinsic properties of the pixel and the second characterizes the neighborhood of pixel. Then, the classification is made on the base on adaptive distance which privileges the one or the other features according to the spatial position of the pixel in the image. The obtained results have shown a significant improvement of our approaches performance compared to the standard version of the EM and FCM, respectively, especially regarding about the robustness face to noise and the accuracy of the edges between regions.
Neurocomputing, 2018
In this paper, a novel Bayesian statistical approach is proposed to tackle the problem of natural image segmentation. The proposed approach is based on finite Dirichlet mixture models in which contextual proportions (i.e., the probabilities of class labels) are modeled with spatial smoothness constraints. The major merits of our approach are summarized as follows: Firstly, it exploits the Dirichlet mixture model which can obtain a better statistical performance than commonly used mixture models (such as the Gaussian mixture model), especially for proportional data (i.e, normalized histogram). Secondly, it explicitly models the mixing contextual proportions as probability vectors and simultaneously integrate spatial relationship between pixels into the Dirichlet mixture model, which results in a more robust framework for image segmentation. Finally, we develop a variational Bayes learning method to update the parameters in a closed-form expression. The effectiveness of the proposed approach is compared with other mixture modeling-based image segmentation approaches through extensive experiments that involve both simulated and natural color images.
INTERNATIONAL JOURNAL OF ENGINEERING …, 2008
Recently stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. Also image segmentation means to divide one picture into different types of classes or regions, for example a picture of geometric shapes has some classes with different colors such as 'circle', 'rectangle', 'triangle' and so on. Therefore we can suppose that each class has normal distribution with specify mean and variance. Thus in general a picture can be Gaussian mixture model. In this paper, we have learned Gaussian mixture model to the pixel of an image as training data and the parameter of the model are learned by EM-algorithm. Meanwhile pixel labeling corresponded to each pixel of true image is done by Bayes rule. This hidden or labeled image is constructed during of running EM-algorithm. In fact, we introduce a new numerically method of finding maximum a posterior estimation by using of EM-algorithm and Gaussians mixture model which we called EM-MAP algorithm. In this algorithm, we have made a sequence of the priors, posteriors and they then convergent to a posterior probability that is called the reference posterior probability. So Maximum a posterior estimation can be determined by this reference posterior probability which will make labeled image. This labeled image shows our segmented image with reduced noises. This method will show in several experiments.
2008
A new hierarchical Bayesian model is proposed for image segmentation based on Gaussian mixture models (GMM) with a prior enforcing spatial smoothness. According to this prior, the local differences of the contextual mixing proportions (i.e. the probabilities of class labels) are Studentpsilas t-distributed. The generative properties of the Student's t-pdf allow this prior to impose smoothness and simultaneously model the edges between the segments of the image. A maximum a posteriori (MAP) expectation-maximization (EM) based algorithm is used for Bayesian inference. An important feature of this algorithm is that all the parameters are automatically estimated from the data in closed form. Numerical experiments are presented that demonstrate the superiority of the proposed model for image segmentation as compared to standard GMM-based approaches and to GMM segmentation techniques with ldquostandardrdquo spatial smoothness constraints.
Computers, Materials & Continua
Spatially Constrained Mixture Model (SCMM) is an image segmentation model that works over the framework of maximum a-posteriori and Markov Random Field (MAP-MRF). It developed its own maximization step to be used within this framework. This research has proposed an improvement in the SCMM's maximization step for segmenting simulated brain Magnetic Resonance Images (MRIs). The improved model is named as the Weighted Spatially Constrained Finite Mixture Model (WSCFMM). To compare the performance of SCMM and WSCFMM, simulated T1-Weighted normal MRIs were segmented. A region of interest (ROI) was extracted from segmented images. The similarity level between the extracted ROI and the ground truth (GT) was found by using the Jaccard and Dice similarity measuring method. According to the Jaccard similarity measuring method, WSCFMM showed an overall improvement of 4.72%, whereas the Dice similarity measuring method provided an overall improvement of 2.65% against the SCMM. Besides, WSCFMM signi cantly stabilized and reduced the execution time by showing an improvement of 83.71%. The study concludes that WSCFMM is a stable model and performs better as compared to the SCMM in noisy and noise-free environments.
ABSTRACT We propose a hierarchical and spatially variant mixture model for image segmentation where the pixel labels are random variables. Distinct smoothness priors are imposed on the label probabilities and the model parameters are computed in closed form through maximum a posteriori (MAP) estimation. More specifically, we propose a new prior for the label probabilities that enforces spatial smoothness of different degree for each cluster.
Image segmentation is crucial and preliminary stage of almost all medical imaging diagnosis tools. Gaussian Mixture Model (GMM) is one of common methods for image segmentation and usually, Expectation Maximizing (EM) is used to estimate the parameters of this model. In order to improve EM performance in presence of noise, an extension for EM is proposed which incorporates mean-filtered image as neighborhood information in clustering. In addition, the histogram of image is used as input for clustering to speed up the process. Proposed algorithm quantitatively evaluated in compare to current extensions for EM.
2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007
In this paper we propose a new segmentation algorithm which combines patch-based information with edge cues under a probabilistic framework. We use a mixture of multiple Gaussians for building the statistical model with color and spatial features, and we incorporate edge information based on texture, color and brightness differences into the EM algorithm. We evaluate our results qualitatively and quantitatively on a large data-set of natural images and compare our results to other state-of-the-art methods.
IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, 2007
We propose a new approach for image segmentation based on a hierarchical and spatially variant mixture model. According to this model, the pixel labels are random variables and a smoothness prior is imposed on them. The main novelty of this work is a new family of smoothness priors for the label probabilities in spatially variant mixture models. These Gauss-Markov random field-based priors allow all their parameters to be estimated in closed form via the maximum a posteriori (MAP) estimation using the expectation-maximization methodology. Thus, it is possible to introduce priors with multiple parameters that adapt to different aspects of the data. Numerical experiments are presented where the proposed MAP algorithms were tested in various image segmentation scenarios. These experiments demonstrate that the proposed segmentation scheme compares favorably to both standard and previous spatially constrained mixture model-based segmentation.
IEEE Transactions on Image Processing, 1997
We introduce the notion of a generalized mixture and propose some methods for estimating it, along with applications to unsupervised statistical image segmentation. A distribution mixture is said to be “generalized” when the exact nature of the components is not known, but each belongs to a finite known set of families of distributions. For instance, we can consider a mixture of three distributions, each being exponential or Gaussian. The problem of estimating such a mixture contains thus a new difficulty: we have to label each of three components (there are eight possibilities). We show that the classical mixture estimation algorithms-expectation-maximization (EM), stochastic EM (SEM), and iterative conditional estimation (ICE)-can be adapted to such situations once as we dispose of a method of recognition of each component separately. That is, when we know that a sample proceeds from one family of the set considered, we have a decision rule for what family it belongs to. Considering the Pearson system, which is a set of eight families, the decision rule above is defined by the use of “skewness” and “kurtosis”. The different algorithms so obtained are then applied to the problem of unsupervised Bayesian image segmentation, We propose the adaptive versions of SEM, EM, and ICE in the case of “blind”, i.e., “pixel by pixel”, segmentation. “Global” segmentation methods require modeling by hidden random Markov fields, and we propose adaptations of two traditional parameter estimation algorithms: Gibbsian EM (GEM) and ICE allowing the estimation of generalized mixtures corresponding to Pearson's system. The efficiency of different methods is compared via numerical studies, and the results of unsupervised segmentation of three real radar images by different methods are presented
2014
Segmentation in images and videos has continuously played an important role in image processing, pattern recognition and machine vision. Despite having been studied for over three decades, the problem of segmentation remains challenging yet appealing due to its ill-posed nature. Maintaining spatial coherence, particularly at object boundaries, remains difficult for image segmentation. Extending to videos, maintaining spatial and temporal coherence, even partially, proves computationally burdensome for recent methods. Finally, connecting these two, foreground segmentation, also known as background suppression, suffers from noisy or dynamic backgrounds, slow foregrounds and illumination variations, to name a few. This dissertation focuses more on probabilistic model based segmentation, primarily due to its applicability in images as well as videos, its past success and mainly because it can be enhanced by incorporating spatial and temporal cues. The first part of the dissertation focu...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.