Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
…
32 pages
1 file
Over the last decades, numerous studies have emphasized the role of serpentinites in the subduction zone geodynamics. Their presence and role in subduction environments are recognized through geophysical, geochemical and field observations of modern and ancient subduction zones and large amounts of geochemical database of serpentinites have been created. Here, we present a review of the geochemistry of serpentinites, based on the compilation of~900 geochemical data of abyssal, mantle wedge and exhumed serpentinites after subduction. The aim was to better understand the geochemical evolution of these rocks during their subduction as well as their impact in the global geochemical cycle. When studying serpentinites, it is essential to determine their protoliths and their geological history before serpentinization. The geochemical data of serpentinites shows little mobility of compatible and rare earth elements (REE) at the scale of hand-specimen during their serpentinization. Thus, REE abundance can be used to identify the protolith for serpentinites, as well as magmatic processes such as melt/rock interactions before serpentinization. In the case of subducted serpentinites, the interpretation of trace element data is difficult due to the enrichments of light REE, independent of the nature of the protolith. We propose that enrichments are probably not related to serpentinization itself, but mostly due to (sedimentary-derived) fluid/rock interactions within the subduction channel after the serpentinization. It is also possible that the enrichment reflects the geochemical signature of the mantle protolith itself which could derive from the less refractory continental lithosphere exhumed at the ocean-continent transition. Additionally, during the last ten years, numerous analyses have been carried out, notably using in situ approaches, to better constrain the behavior of fluid-mobile elements (FME; e.g. B, Li, Cl, As, Sb, U, Th, Sr) incorporated in serpentine phases. The abundance of these elements provides information related to the fluid/rock interactions during serpentinization and the behavior of FME, from their incorporation to their gradual release during subduction. Serpentinites are considered as a reservoir of the FME in subduction zones and their role, notably on arc magma composition, is underestimated presently in the global geochemical cycle.
Journal of Petrology, 2012
We provide new insights into the geochemistry of serpentinites from mid-ocean ridges (Mid-Atlantic Ridge and Hess Deep), passive margins (Iberia Abyssal Plain and Newfoundland) and fore-arcs (Mariana and Guatemala) based on bulk-rock and in situ mineral major and trace element compositional data collected on drill cores from the Deep Sea Drilling Project and Ocean Drilling Program. These data are important for constraining the serpentinite-hosted trace element inventory of subduction zones. Bulk serpentinites show up to several orders of magnitude enrichments in Cl, B, Sr, U, Sb, Pb, Rb, Cs and Li relative to elements of similar compatibility during mantle melting, which correspond to the highest primitive mantle-normalized B/Nb, B/Th, U/Th, Sb/Ce, Sr/Nd and Li/Y among subducted lithologies of the oceanic lithosphere (serpentinites, sediments and altered igneous oceanic crust). Among the elements showing relative enrichment, Cl and B are by far the most abundant with bulk concentrations mostly above 1000 mg g À1 and 30 mg g À1 , respectively. All other trace elements showing relative enrichments are generally present in low concentrations (mg g À1 level), except Sr in carbonate-bearing serpentinites (thousands of mg g À1 ). In situ data indicate that concentrations of Cl, B, Sr, U, Sb, Rb and Cs are, and that of Li can be, increased by serpentinization. These elements are largely hosted in serpentine (lizardite and chrysotile, but not antigorite). Aragonite precipitation leads to significant enrichments in Sr, U and B, whereas calcite is important only as an Sr host. Commonly observed brucite is trace element-poor.The overall enrichment patterns are comparable among serpentinites from mid-ocean ridges, passive margins and fore-arcs, whereas the extents of enrichments are often specific to the geodynamic setting. Variability in relative trace element enrichments within a specific setting (and locality) can be several orders of magnitude. Mid-ocean ridge serpentinites often show pronounced bulk-rock U enrichment in addition to ubiquitous Cl, B and Sr enrichment. They also exhibit positive Eu anomalies on chondrite-normalized rare earth element plots. Passive margin serpentinites tend to have higher overall incompatible trace element contents than mid-ocean ridge and fore-arc serpentinites and show the highest B enrichment among all the studied serpentinites. Fore-arc serpentinites are characterized by low overall trace element contents and show the lowest Cl, but the highest Rb, Cs and Sr enrichments. Based on our data, subducted dehydrating serpentinites are likely to release fluids with high B/Nb, B/Th, U/Th, Sb/Ce and Sr/Nd, rendering them one of the potential sources of some of the characteristic trace element fingerprints of arc magmas (e.g. high B/Nb, high Sr/Nd, high Sb/Ce). However, although serpentinites are a substantial part of global subduction zone chemical cycling, owing to their low overall trace element contents (except for B and Cl) their geochemical imprint on arc magma sources (apart from addition of H 2 O, B and Cl) can be masked considerably by the trace element signal from subducted crustal components.
Chemical Geology, 2010
The Tso Morari serpentinites in the Ladakh area, northwest Himalaya, originated from the forearc mantle overlying the northward subducting Neo-Tethys lithosphere and the margin of the Indian continent. The serpentinites are characterized by high concentration of fluid-mobile elements (FME: As, Sb, B, Li, and U) compared to ophiolitic or abyssal serpentinites. The Pb isotopic compositions of serpentinites show influence of the subducted Indian continental lithosphere. Trace element concentrations of antigorite determined in situ with Laser Ablation High Resolution Inductively Coupled Mass Spectrometer (LA-HR-ICP-MS) show high contents of FME including Pb, in contrast to the spatially associated iron oxides. Rare earth elements (REE) and compatible elements, such as Sc and Co, remained immobile during the hydration, allowing the identification of the primary minerals (olivine or orthopyroxene) from which serpentine formed. Serpentinized olivine displays higher Sb and As concentrations (up to 1000 × PM) than serpentinized orthopyroxenes that are enriched in Pb, Cs and Li (2 to up to 10 × PM). We propose that the observed FME distribution in two types of serpentine reflect the differential incorporation of FME during the downward movement of the serpentinite along the subduction plane. At temperature lower than 400°C, at shallow depths, olivine is preferentially serpentinized and incorporates elements that are fluid soluble at low temperatures, such as Sb and As. Above 400°C, orthopyroxene is hydrated and incorporates Pb, Cs, Li and possibly Ba. Boron and U are incorporated in both types of serpentine suggesting that they are released from slabs at temperatures around 300-400°C. The serpentine acts as a sink for water, but also for FME and transports them to deeper and hotter levels in the mantle, down to the isotherm 600-650°C where dehydration occurs.
International Geology Review, 2004
CITATIONS 92 READS 166 5 authors, including: Some of the authors of this publication are also working on these related projects:
Terra Nova, 2011
Goldschmidt Abstracts, 2020
Geochemistry, Geophysics, Geosystems, 2007
1] Serpentinites associated with eclogitic rocks were examined from three areas: the Alps, Cuba, and the Himalayas. Most serpentinites have low Al/Si and high concentrations of Ir-type platinum group elements (PGE) in bulk rock compositions, indicating that they are hydrated mantle peridotites. A few samples contain high Al/Si and low concentrations of Ir-type PGE, suggesting that they are ultramafic cumulates. Among the hydrated mantle peridotites, we identified two groups, primarily on the basis of Al/Si and Mg/ Si ratios: forearc mantle serpentinites and hydrated abyssal peridotites. Forearc serpentinites occur in the Himalayas and along a major deformation zone in Cuba. All serpentinites in the Alps and most serpentinites in Cuba are hydrated abyssal peridotites. Himalayan serpentinites have low Al/Si and high Mg/Si ratios in bulk rock compositions, and high Cr in spinel; they were serpentinized by fluids released from the subducted Indian continent and enriched in fluid-mobile elements, and show high 87 Sr/ 86 Sr, up to 0.730, similar to the values of rocks of the subducted margin of the Indian continent. Although Himalayan serpentinites have a similar refractory geochemical signature as the Mariana forearc serpentinites, the former contain markedly high concentrations of fluid-mobile elements and high 87 Sr/ 86 Sr compared to the latter that were hydrated by subducted Pacific Ocean crust. The data indicate that the enrichment of fluidmobile elements in forearc serpentinites depends on the composition of subducted slabs. Alpine serpentinites and most Cuban serpentinites show moderate Al/Si similar to abyssal peridotites. Hydration of peridotites near the seafloor is supported by micro-Raman spectra of earlier formed lizardite, high d 34 S (+11 to +17%) of sulphides, and elevated 87 Sr/ 86 Sr, ranging from 0.7037 to 0.7095. The data support the contribution of S and Sr from seawater and sediments. These serpentinites are not highly enriched in fluidmobile elements because serpentinization occurred at a high water/rock ratio. Alkali elements are conspicuously unenriched in all serpentinites. This lack of alkali enrichment is explained by slab retention of alkalis. This is also consistent with the observation of relatively low alkali concentrations in volcanic front magmas, since partial melting related to the volcanic fronts is triggered by dehydration of serpentinites.
Chemical Geology, 2010
Small-scale shear zones are present in drillcore samples of abyssal peridotites from the Mid-Atlantic ridge at 15°20′N (Ocean Drilling Program Leg 209). The shear zones act as pathways for both evolved melts and hydrothermal fluids. We examined serpentinites directly adjacent to such zones to evaluate chemical changes resulting from melt-rock and fluid-rock interaction and their influence on the mineralogy. Compared to fresh harzburgite and melt-unaffected serpentinites, serpentinites adjacent to melt-bearing veins show a marked enrichment in rare earth elements (REE), strontium and high field strength elements (HFSE) zirconium and niobium. From comparison with published chemical data of variably serpentinized and melt-unaffected harzburgites, one possible interpretation is that interaction with the adjacent melt veins caused the enrichment in HFSE, whereas the REE contents might also be enriched due to hydrothermal processes. Enrichment in alumina during serpentinization is corroborated by reaction path models for interaction of seawater with harzburgite-plagiogranite mixtures. These models explain both increased amounts of alumina in the serpentinizing fluid for increasing amounts of plagiogranitic material mixed with harzburgite, and the absence of brucite from the secondary mineralogy due to elevated silica activity. By destabilizing brucite, nearby melt veins might fundamentally influence the low-temperature alteration behaviour of serpentinites. Although observations and model results are in general agreement, due to absence of any unaltered protolith a quantification of element transport during serpentinization is not straightforward.
Terra Nova, 2013
The abundances of F, Cl and S in arc magmas are systematically higher than in other mantle-derived magmas, suggesting that these elements are added from the slab along with H 2 O. We present ion probe microanalyses of F, Cl and S in serpentine minerals that represent the P-T evolution of the oceanic lithosphere, from its serpentinization at the ridge, to its dehydration at around 100 km depth during subduction. F, Cl and S are incorporated early into serpentine during its formation at mid-ocean ridges, and serpentinized lithosphere then car-ries these elements to subduction zones. More than 50% of the F, Cl and S are removed from serpentine during the prograde metamorphic lizardite/antigorite transition. Due to the low solubility of F in water, and to the low amount of water released during this phase transition, the fluids mobilizing these elements must be dominated by SO X rather than H 2 O.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Chemical Geology, 2013
Chemical Geology, 2014
Chemical Geology, 2012
Earth and Planetary Science Letters, 1991
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Geochemistry, Geophysics, Geosystems, 2005
Goldschmidt2022 abstracts, 2022
Earth and Planetary Science Letters, 2014
Geophysical Research Letters, 2006
Earth, Planets and Space, 2014