Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2010, Journal of Geophysical Research
…
15 pages
1 file
This article investigates different approaches for assessing the degree of roughness of the slip distribution of future earthquakes. First, we analyze a database of slip images extracted from a suite of 152 finite-source rupture models from 80 events (M w = 4.1-8.9). This results in an empirical model defining the distribution of the slip spectrum corner wave numbers (k c ) as a function of moment magnitude. To reduce the "epistemic" uncertainty, we select a single slip model per event and screen out poorly resolved models. The number of remaining models (30) is thus rather small. In addition, the robustness of the empirical model rests on a reliable estimation of k c by kinematic inversion methods. We address this issue by performing tests on synthetic data with a frequency domain inversion method. These tests reveal that due to smoothing constraints used to stabilize the inversion process, k c tends to be underestimated. We then develop an alternative approach: (1) we establish a proportionality relationship between k c and the peak ground acceleration (PGA), using a k -2 kinematic source model, and ( ) we analyze the PGA distribution, which is believed to be better constrained than slip images. These two methods reveal that k c follows a lognormal distribution, with similar standard deviations for both methods.
Geomatics, Natural Hazards and Risk
This paper presents a stochastic model to simulate spatial distribution of slip on the rupture plane for large earthquakes (M w > 7). A total of 45 slip models coming from the past 33 large events are examined to develop the model. The model has been developed in two stages. In the first stage, effective rupture dimensions are derived from the data. Empirical relations to predict the rupture dimensions, mean and standard deviation of the slip, the size of asperities and their location from the hypocentre from the seismic moment are developed. In the second stage, the slip is modelled as a homogeneous random field. Important properties of the slip field such as correlation length have been estimated for the slip models. The developed model can be used to simulate ground motion for large events.
Geophysical Journal International, 2005
There has been debate on whether average slip D in long ruptures should scale with rupture length L, or with rupture width W . This scaling discussion is equivalent to asking whether average stress drop σ , which is sometimes considered an intrinsic frictional property of a fault, is approximately constant over a wide range of earthquake sizes. In this paper, we examine slip-length scaling relations using a simplified 1-D model of spatially heterogeneous slip. The spatially heterogeneous slip is characterized by a stochastic function with a Fourier spectrum that decays as k −α , where k is the wavenumber and α is a parameter that describes the spatial smoothness of slip. We adopt the simple rule that an individual earthquake rupture consists of only one spatially continuous segment of slip (i.e. earthquakes are not generally separable into multiple disconnected segments of slip). In this model, the slip-length scaling relation is intimately related to the spatial heterogeneity of the slip; linear scaling of average slip with rupture length only occurs when α is about 1.5, which is a relatively smooth spatial distribution of slip. We investigate suites of simulated ruptures with different smoothness, and we show that faults with large slip heterogeneity tend to have higher D/L ratios than those with spatially smooth slip. The model also predicts that rougher faults tend to generate larger numbers of small earthquakes, whereas smooth faults may have a uniform size distribution of earthquakes. This simple 1-D fault model suggests that some aspects of stress drop scaling are a consequence of whatever is responsible for the spatial heterogeneity of slip in earthquakes.
Bulletin of the Seismological Society of America, 1994
We have determined a source rupture model for the 1992 Landers earthquake (Mw 7.2) compatible with multiple data sets, spanning a frequency range from zero to 0.5 Hz. Geodetic survey displacements, near-field and regional strong motions, broadband teleseismic waveforms, and surface offset measurements have been used explicitly to constrain both the spatial and temporal slip variations along the model fault surface. Our fault parameterization involves a variable-slip, multiple-segment, finite-fault model which treats the diverse data sets in a self-consistent manner, allowing them to be inverted both independently and in unison. The high-quality data available for the Landers earthquake provide an unprecedented opportunity for direct comparison of rupture models determined from independent data sets that sample both a wide frequency range and a diverse spatial station orientation with respect to the earthquake slip and radiation pattern. In all models, consistent features include the following: (1) similar overall dislocation patterns and amplitudes with seismic moments of 7 to 8 x 1026 dyne-cm (seismic potency of 2.3 to 2.7 km3);
Geophysical Journal International, 2005
There has been debate on whether average slip D in long ruptures should scale with rupture length L, or with rupture width W . This scaling discussion is equivalent to asking whether average stress drop σ , which is sometimes considered an intrinsic frictional property of a fault, is approximately constant over a wide range of earthquake sizes. In this paper, we examine slip-length scaling relations using a simplified 1-D model of spatially heterogeneous slip. The spatially heterogeneous slip is characterized by a stochastic function with a Fourier spectrum that decays as k −α , where k is the wavenumber and α is a parameter that describes the spatial smoothness of slip. We adopt the simple rule that an individual earthquake rupture consists of only one spatially continuous segment of slip (i.e. earthquakes are not generally separable into multiple disconnected segments of slip). In this model, the slip-length scaling relation is intimately related to the spatial heterogeneity of the slip; linear scaling of average slip with rupture length only occurs when α is about 1.5, which is a relatively smooth spatial distribution of slip. We investigate suites of simulated ruptures with different smoothness, and we show that faults with large slip heterogeneity tend to have higher D/L ratios than those with spatially smooth slip. The model also predicts that rougher faults tend to generate larger numbers of small earthquakes, whereas smooth faults may have a uniform size distribution of earthquakes. This simple 1-D fault model suggests that some aspects of stress drop scaling are a consequence of whatever is responsible for the spatial heterogeneity of slip in earthquakes.
1999
1 URS Greiner Woodward Clyde, Pasadena, CA, U.S.A Email: [email protected] 2 Disaster Prevention Research Institute, Uji, Japan Email: [email protected] 3 Pacific Gas & Electric Company, San Francisco, CA, USA Email: [email protected] 4 Disaster Prevention Research Institute, Uji, Japan 5 GeoResearch Institute, 4-3-2 Itachibori, Nishi-ku, Osaka 550-0012, Japan Email: [email protected] 6 Kansai Electric Power Co., Inc., 3-3-22, Nakanoshima, Kita-ku, Osaka, 530-8270, Japan CHARACTERIZING EARTHQUAKE SLIP MODELS FOR THE PREDICTION OF STRONG GROUND MOTION
Bulletin of the Seismological Society of America, 2013
One approach to investigate earthquake source processes is to produce kinematic source models from inversion of seismic records and geodetic data. The setup of the inversion requires a variety of assumptions and constraints to restrict the range of possible models. Here, we evaluate to what extent physically plausible earthquake scenarios are reliably restituted in spite of these restrictions. We study which characteristics of ruptures, such as rupture velocity, slip distribution, stress drop, rise time, and slip function, can be reliably determined from the inversion of near-field seismic and geodetic data. Using spontaneous dynamic rupture simulations, we generate five earthquake scenarios, each of which has different characteristics of the source process. Then we conduct a blind test by modeling the synthetic near-source data using a standard inversion scheme that optimizes the fit to the observations while searching for solutions with minimum roughness. The inversion procedure assumes a rupture front propagating away from the hypocenter with variable rupture velocity and a simple cosine slip-time function. Our results show that, overall, slip distribution and stress drop are reasonably well determined even for input models with relatively complex histories (such as a subshear rupture transitioning to supershear speeds). Depth-averaged rupture velocities are also reasonably well resolved although their estimate progressively deteriorates away from the hypocenter. The local rise time and slip function are not well resolved, but there is some sensitivity to the rupture pulse width, which can be used to differentiate between pulse-like and crack-like ruptures. Our test for understanding the inaccuracies in Green's functions shows that random 3D perturbations of 5% standard deviation do not lead to significant degradation of the estimation of earthquake source parameters. As remedies to the current limitations, we propose smoothing slip function parameters and using more complicated inversion schemes only if data necessitates them.
Bulletin of the Seismological Society of America, 2007
The 2004 Parkfield, California, earthquake is used to investigate stability and uncertainty aspects of the finite-fault slip inversion problem with different a priori model assumptions. We utilize records from 54 strong ground motion stations and 13 continuous, 1-Hz sampled, geodetic instruments. Two inversion procedures are compared: a linear least-squares subfault-based methodology and a nonlinear global search algorithm. These two methods encompass a wide range of the different approaches that have been used to solve the finite-fault slip inversion problem. For the Parkfield earthquake and the inversion of velocity or displacement waveforms, near-surface related site response (top 100 m, frequencies above 1 Hz) is shown to not significantly affect the solution. Results are also insensitive to selection of slip rate functions with similar duration and to subfault size if proper stabilizing constraints are used. The linear and nonlinear formulations yield consistent results when the same limitations in model parameters are in place and the same inversion norm is used. However, the solution is sensitive to the choice of inversion norm, the bounds on model parameters, such as rake and rupture velocity, and the size of the model fault plane. The geodetic data set for Parkfield gives a slip distribution different from that of the strong-motion data, which may be due to the spatial limitation of the geodetic stations and the bandlimited nature of the strong-motion data. Cross validation and the bootstrap method are used to set limits on the upper bound for rupture velocity and to derive mean slip models and standard deviations in model parameters. This analysis shows that slip on the northwestern half of the Parkfield rupture plane from the inversion of strong-motion data is model dependent and has a greater uncertainty than slip near the hypocenter.
arXiv: Geophysics, 2019
We have developed a model that describes the major characteristics of a rupture, ranging from regular earthquakes (EQs) to slow slip events (SSEs), including episodic tremor and slip (ETS). Previous model predictions, while accurate, are based on a highly idealized initial stress distribution and a simple velocity-dependent expression for friction. The full scope of the model has, therefore, not been fully demonstrated. Further developments, presented here, include more physically realistic treatments of both the initial conditions and friction. Model predictions are: (1) The type of a seismic event, i.e. regular EQ or SSE, is determined by the fault strength, the shear to normal stress ratio, and the gradient in the ratio. Quantitative values for these crucial parameters are also obtained here; (2) Rupture velocities for regular EQs range from a fraction of the shear wave velocity up to the supershear velocity. The maximum slip velocity for regular EQs is typically on the order of ...
Geophysical Journal International, 2014
Earthquake rupture models inferred from inversions of geophysical and/or geodetic data exhibit remarkable variability due to uncertainties in modelling assumptions, the use of different inversion algorithms, or variations in data selection and data processing. A robust statistical comparison of different rupture models obtained for a single earthquake is needed to quantify the intra-event variability, both for benchmark exercises and for real earthquakes. The same approach may be useful to characterize (dis-)similarities in events that are typically grouped into a common class of events (e.g. moderate-size crustal strike-slip earthquakes or tsunamigenic large subduction earthquakes). For this purpose, we examine the performance of the spatial prediction comparison test (SPCT), a statistical test developed to compare spatial (random) fields by means of a chosen loss function that describes an error relation between a 2-D field ('model') and a reference model. We implement and calibrate the SPCT approach for a suite of synthetic 2-D slip distributions, generated as spatial random fields with various characteristics, and then apply the method to results of a benchmark inversion exercise with known solution. We find the SPCT to be sensitive to different spatial correlations lengths, and different heterogeneity levels of the slip distributions. The SPCT approach proves to be a simple and effective tool for ranking the slip models with respect to a reference model.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Geophysical Journal International, 2014
Journal of Geophysical Research, 2002
Geophysical Journal International, 2010
Journal of Geophysical Research, 2008
Geophysical Journal …, 2009
Geophysical Research Letters, 2002
Bulletin of the Seismological Society of America, 1988
Bulletin of the Seismological Society of America, 2020
AGU Fall Meeting Abstracts, 2003
Journal of Geophysical Research, 2005
Journal of Geophysical Research, 2003
Journal of Geophysical Research, 2010
Pure and Applied Geophysics, 2006
Journal of Geophysical Research: Solid Earth, 2004
Bulletin of the Seismological Society of America, 2002