Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2020, Global Change Biology
…
5 pages
1 file
Amazonian fires have been of great scientific and political concern in recent years, as they indicate changes in environmental governance, altered environmental conditions, and lie at the interface of climate and land-use changes -two of the dominant stressors in tropical environments . Research on complex socio-environmental systems, such as the Amazon, is crucial to inform more effective decision making. With this in mind, we were concerned that recent papers -including that of Xu et al. 2020 in this journal -have failed to contemplate critical nuances that underpin Amazonian fires, leading to flawed results. In the interest of supporting science that is more informative, we outline five key features of the Amazon that need to be considered when analyzing spatial-temporal patterns of fires.
Ecological Applications, 2011
Widespread occurrence of fires in Amazonian forests is known to be associated with extreme droughts, but historical data on the location and extent of forest fires are fundamental to determining the degree to which climate conditions and droughts have affected fire occurrence in the region. We used remote sensing to derive a 23-year time series of annual landscape-level burn scars in a fragmented forest of the eastern Amazon. Our burn scar data set is based on a new routine developed for the Carnegie Landsat Analysis System (CLAS), called CLAS-BURN, to calculate a physically based burn scar index (BSI) with an overall accuracy of 93% (Kappa coefficient 0.84). This index uses sub-pixel cover fractions of photosynthetic vegetation, non-photosynthetic vegetation, and shade/burn scar spectral end members. From 23 consecutive Landsat images processed with the CLAS-BURN algorithm, we quantified fire frequencies, the variation in fire return intervals, and rates of conversion of burned forest to other land uses in a 32 400 km 2 area. From 1983 to 2007, 15% of the forest burned; 38% of these burned forests were subsequently deforested, representing 19% of the area cleared during the period of observation. While 72% of the fire-affected forest burned only once during the 23-year study period, 20% burned twice, 6% burned three times, and 2% burned four or more times, with the maximum of seven times. These frequencies suggest that the current fire return interval is 5-11 times more frequent than the estimated natural fire regime. Our results also quantify the substantial influence of climate and extreme droughts caused by a strong El Niño Southern Oscillation (ENSO) on the extent and likelihood of returning forest fires mainly in fragmented landscapes. These results are an important indication of the role of future warmer climate and deforestation in enhancing emissions from more frequently burned forests in the Amazon.
Land
The 2019 fire crisis in Amazonia dominated global news and triggered fundamental questions about the possible causes behind it. Here we performed an in-depth investigation of the drivers of active fire anomalies in the Brazilian Amazon biome. We assessed a 2003–2019 time-series of active fires, deforestation, and water deficit and evaluated potential drivers of active fire occurrence in 2019, at the biome-scale, state level, and local level. Our results revealed abnormally high monthly fire counts in 2019 for the states of Acre, Amazonas, and Roraima. These states also differed from others by exhibiting in this year extreme levels of deforestation. Areas in 2019 with active fire occurrence significantly greater than the average across the biome had, on average, three times more active fires in the three previous years, six times more deforestation in 2019, and five times more deforestation in the five previous years. Approximately one-third of yearly active fires from 2003 to 2019 o...
Global Environmental Change, 2015
Although humans have long influenced fire regimes on earth, recent anthropogenic drivers are causing major shifts in fire activity in some parts of the world and are expected to further alter global fire regimes in the near future (Bowman et al., 2011; Krawchuk et al., 2009; Turner, 2010). These changes will have consequences for biodiversity, conservation, and ecosystem processes, along with human health, economics, and wellbeing (Bowman et al., 2009; Lohman et al., 2007). Adapting to and mitigating the effects of changing fire regimes requires an understanding of the drivers of both broad scale and local heterogeneity in fire activity, and of the links, interactions, and interdependencies of the multiple drivers of these changes.
Global Biogeochemical Cycles, 2017
Consistent long-term estimates of fire emissions are important to understand the changing role of fire in the global carbon cycle and to assess the relative importance of humans and climate in shaping fire regimes. However, there is limited information on fire emissions from before the satellite era. We show that in the Amazon region, including the Arc of Deforestation and Bolivia, visibility observations derived from weather stations could explain 61% of the variability in satellite-based estimates of bottom-up fire emissions since 1997 and 42% of the variability in satellite-based estimates of total column carbon monoxide concentrations since 2001. This enabled us to reconstruct the fire history of this region since 1973 when visibility information became available. Our estimates indicate that until 1987 relatively few fires occurred in this region and that fire emissions increased rapidly over the 1990s. We found that this pattern agreed reasonably well with forest loss data sets, indicating that although natural fires may occur here, deforestation and degradation were the main cause of fires. Compared to fire emissions estimates based on Food and Agricultural Organizationˈs Global Forest and Resources Assessment data, our estimates were substantially lower up to the 1990s, after which they were more in line. These visibility-based fire emissions data set can help constrain dynamic global vegetation models and atmospheric models with a better representation of the complex fire regime in this region.
Remote Sensing, 2022
The Amazon Basin is undergoing extensive environmental degradation as a result of deforestation and the rising occurrence of fires. The degradation caused by fires is exacerbated by the occurrence of anomalously dry periods in the Amazon Basin. The objectives of this study were: (i) to quantify the extent of areas that burned between 2001 and 2019 and relate them to extreme drought events in a 20-year time series; (ii) to identify the proportion of countries comprising the Amazon Basin in which environmental degradation was strongly observed, relating the spatial patterns of fires; and (iii) examine the Amazon Basin carbon balance following the occurrence of fires. To this end, the following variables were evaluated by remote sensing between 2001 and 2019: gross primary production, standardized precipitation index, burned areas, fire foci, and carbon emissions. During the examined period, fires affected 23.78% of the total Amazon Basin. Brazil had the largest affected area (220,087 ...
Remote Sensing
Between 1998 and 2017, climate-related disasters represented 91% of all occurrences worldwide, causing approximately US$ 2.245 billion of direct economic losses. In the Amazon region, fire is used as a widely spread technique for land clearing, agricultural management, hunting, and religious rituals. However, over the past 20 years, severe droughts caused a major amplification of fire occurrences, leading to several socioeconomic and environmental impacts. Particularly in Acre state, located in the southwestern Brazilian Amazon, the occurrence of extensive fires, associated with extreme climatic events, has been reported since 2005. However, fire dynamics, land tenure relationships, and associated impacts are poorly quantified. In this study, we aim to investigate the following: (1) The spatiotemporal variability of fire dynamics during anomalously dry and regular climate conditions; (2) the attribution of fire occurrence and land tenure relationship, and (3) the environmental, soci...
Global Change Biology, 2003
Fires are major disturbances for ecosystems in Amazonia. They affect vegetation succession, alter nutrients and carbon cycling, and modify the composition of the atmosphere. Fires in this region are strongly related to land-use, land-cover and climate conditions. Because these factors are all expected to change in the future, it is reasonable to expect that fire activity will also change. Models are needed to quantitatively estimate the magnitude of these potential changes. Here we present a new fire model developed by relating satellite information on fires to corresponding statistics on climate, land-use and land-cover. The model is first shown to reproduce the main contemporary large-scale features of fire patterns in Amazonia. To estimate potential changes in fire activity in the future, we then applied the model to two alternative scenarios of development of the region. We find that in both scenarios, substantial changes in the frequency and spatial patterns of fires are expected unless steps are taken to mitigate fire activity.
Frontiers in Forests and Global Change
Fires are among the main drivers of forest degradation in Amazonia, causing multiple socioeconomic and environmental damages. Although human-ignited sources account for most of the fire events in Amazonia, extended droughts may magnify their occurrence and propagation. The southwestern Amazonia, a transnational region shared by Brazil, Peru, and Bolivia and known as the MAP region, has been articulating coordinated actions to prevent disasters, including fire, to reduce their negative impacts. Therefore, to understand the fire patterns in the MAP region, we investigated their main drivers and the changes in the suitability of fire occurrence for the years 2005, 2010, 2016, and 2020. We used a maximum entropy (MaxEnt) model approach based on active fire data from satellites, climatic data, and land use and land cover mapping to spatially quantify the suitability of fire occurrence and its drivers. We used the year 2015 to calibrate the models. For climatic data and active fire count,...
Geophys. Res. …, 2007
Earth System Dynamics Discussions
Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, common under current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – the representative concentration pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more fo...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Scientific Reports, 2021
Forest Ecology and Management
Proceedings of the National Academy of Sciences, 2012
Global Change Biology, 2009
Remote Sensing, 2020
… of the Royal …, 2008
Global Change Biology, 2019