Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2012, RePEc: Research Papers in Economics
In this paper we will introduce a hybrid option pricing model that combines the classical tempered stable model and regime switching by a hidden Markov chain. This model allows the description of some stylized phenomena about asset return distributions that are well documented in financial markets such as time-varying volatility, skewness, and heavy tails. We will derive the option pricing formula under the this model by means of Fourier transform method. In order to demonstrate the superior accuracy and the capacity of capturing dynamics using the proposed model, we will empirically test the model using call option prices where the underlying is the S&P 500 Index.
Social Science Research Network, 2019
In this chapter, we present recent developments in using the tools of continuous-time Markov chains for the valuation of European and path-dependent financial derivatives. We also survey results on a newly proposed regime switching approximation to stochastic volatility, and stochastic local volatility models. The presented framework is part of an exciting recent stream of literature on numerical option pricing, and offers a new perspective that combines the theory of diffusion processes, Markov chains, and Fourier techniques. It is also elegantly connected to partial differential equation (PDE) approaches.
SSRN Electronic Journal, 2017
A well-known approach for the pricing of options under regime-switching models is to use the regime-switching Esscher transform (also called regime-switching mean-correcting martingale measure) to obtain risk-neutrality. One way to handle regime unobservability consists in using regime probabilities that are filtered under this risk-neutral measure to compute risk-neutral expected payoffs. The current paper shows that this natural approach creates path-dependence issues within option price dynamics. Indeed, since the underlying asset price can be embedded in a Markov process under the physical measure even when regimes are unobservable, such path-dependence behavior of vanilla option prices is puzzling and may entail non-trivial theoretical features (e.g., time non-separable preferences) in a way that is difficult to characterize. This work develops novel and intuitive risk-neutral measures that can incorporate regime risk-aversion in a simple fashion and which do not lead to such path-dependence side effects. Numerical schemes either based on dynamic programming or Monte-Carlo simulations to compute option prices under the novel risk-neutral dynamics are presented.
The concern of this article is to derive a regime switching model that can be utilized to price European call options for a financial market that exhibits structural changes with time. The model is formulated based on the fact that the underlying asset process is described by a geometric Brownian motion that is modulated by a continuous-time Markov chain with two regimes. Moreover, by an application of the change of measure technique, an option price is derived under the risk neutral valuation and the model parameter estimates is performed by use of the maximum likelihood estimation. The model implementation is carried out by utilizing the Russell 2000 and Facebook in dices data sets. The model results are compared with that of the Black-Scholes model in order to establish the model with better results in terms of predicting the European call option prices. In general, the data sets have common characteristics of financial time series across the regimes and the volatility process spends longer time in regime 2 than it stays in regime 1. The predicted call option prices from both models are more or less similar across the market indices; however, the results of the Black-Scholes model are a bit closer to the market prices than that of the regime-switching model across the two markets. Therefore, the Black-Scholes model slightly gives better results for the Russell 2000 and Facebook indices data sets as compared with the RS model.
2017
This paper develops a dynamic option pricing model with economic regime shifts. Assuming the one-period logarithmic returns of the underlying asset follows a simple hidden Markov model, we derive analytical pricing formula for European options. It is found that option prices are highly dependent on the likelihood of the current economic regime, with additional price premium spelled out for the regimes with high volatilities. The so-called volatility smile or smirk observed from the market activities are well explained by our model. To elaborate the versatility of our model, we compare our model analysis to the findings developed by Hardy (2001), which is a special case of our general setting.
Journal of Economic Dynamics and Control, 2016
In this paper, an analytical approximation formula for pricing European options is obtained under a newly proposed hybrid model with the volatility of volatility in the Heston model following a Markov chain, the adoption of which is motivated by the empirical evidence of the existence of regime-switching in real markets. We first derive the coupled PDE (partial differential equation) system that governs the European option price, which is solved with the perturbation method. It should be noted that the newly derived formula is fast and easy to implement with only normal distribution function involved, and numerical experiments confirm that our formula could provide quite accurate option prices, especially for relatively short-tenor ones. Finally, empirical studies are carried out to show the superiority of our model based on S&P 500 returns and options with the time to expiry less than one month.
Applied Mathematical Finance, 2017
We develop and implement a method for maximum likelihood estimation of a regime-switching stochastic volatility model. Our model uses a continuous time stochastic process for the stock dynamics with the instantaneous variance driven by a Cox-Ingersoll-Ross (CIR) process and each parameter modulated by a hidden Markov chain. We propose an extension of the EM algorithm through the Baum-Welch implementation to estimate our model and filter the hidden state of the Markov chain while using the VIX index to invert the latent volatility state. Using Monte Carlo simulations, we test the convergence of our algorithm and compare it with an approximate likelihood procedure where the volatility state is replaced by the VIX index. We found that our method is more accurate than the approximate procedure. Then, we apply Fourier methods to derive a semi-analytical expression of S&P 500 and VIX option prices, which we calibrate to market data. We show that the model is sufficiently rich to encapsulate important features of the joint dynamics of the stock and the volatility and to consistently fit option market prices.
HAL (Le Centre pour la Communication Scientifique Directe), 2020
In this paper, we introduce a new time series model having a stochastic exponential tail. This model is constructed based on the Normal Tempered Stable distribution with a time-varying parameter. The model captures the stochastic exponential tail, which generates the volatility smile effect and volatility term structure in option pricing. Moreover, the model describes the time-varying volatility of volatility. We empirically show the stochastic skewness and stochastic kurtosis by applying the model to analyze S\&P 500 index return data. We present the Monte-Carlo simulation technique for the parameter calibration of the model for the S\&P 500 option prices. We can see that the stochastic exponential tail makes the model better to analyze the market option prices by the calibration.
2018
In the classical model of stock prices which is assumed to be Geometric Brownian motion, the drift and the volatility of the prices are held constant. However, in reality, the volatility does vary. In quantitative finance, the Heston model has been successfully used where the volatility is expressed as a stochastic differential equation. In addition, we consider a regime switching model where the stock volatility dynamics depends on an underlying process which is possibly a non-Markov pure jump process. Under this model assumption, we find the locally risk minimizing pricing of European type vanilla options. The price function is shown to satisfy a Heston type PDE.
Journal of Data Science, 2021
In this article, we consider a model of time-varying volatility which generalizes the classical Black-Scholes model to include regime-switching properties. Specifically, the unobservable state variables for stock fluctuations are modeled by a Markov process, and the drift and volatility parameters take different values depending on the state of this hidden Markov process. We provide a closed-form formula for the arbitrage-free price of the European call option, when the hidden Markov process has finite number of states. Two simulation methods, the discrete diffusion method and the Markovian tree method, for computing the European call option price are presented for comparison.
Quantitative Finance, 2002
This paper develops a family of option pricing models when the underlying stock price dynamic is modelled by a regime switching process in which prices remain in one volatility regime for a random amount of time before switching over into a new regime. Our family includes the regime switching models of Hamilton (Hamilton J 1989 Econometrica 57 357-84), in which volatility influences returns. In addition, our models allow for feedback effects from returns to volatilities. Our family also includes GARCH option models as a special limiting case. Our models are more general than GARCH models in that our variance updating schemes do not only depend on levels of volatility and asset innovations, but also allow for a second factor that is orthogonal to asset innovations. The underlying processes in our family capture the asymmetric response of volatility to good and bad news and thus permit negative (or positive) correlation between returns and volatility. We provide the theory for pricing options under such processes, present an analytical solution for the special case where returns provide no feedback to volatility levels, and develop an efficient algorithm for the computation of American option prices for the general case.
arXiv: Applications, 2016
We perform a detailed comparison between a Markov Switching Jump Diffusion Model and a Markov Switching {\alpha}-Stable Distribution Model with respect to the analysis of non-stationary data. We show that the jump diffusion model is extremely robust, flexible and accurate in fitting of financial time series. A thorough computational study involving the two models being applied to real data, namely, the S&P500 index, is provided. The study shows that the jump-diffusion model solves the over-smoothing issue stated in (Di Persio and Frigo, 2016), while the {\alpha}-stable distribution approach is a good compromise between computational effort and performance in the estimate of implied volatility, which is a major problem widely underlined in the dedicated literature.
Journal of Banking & Finance, 2008
Asset management and pricing models require the proper modeling of the return distribution of financial assets. While the return distribution used in the traditional theories of asset pricing and portfolio selection is the normal distribution, numerous studies that have investigated the empirical behavior of asset returns in financial markets throughout the world reject the hypothesis that asset return distributions are normally distribution. Alternative models for describing return distributions have been proposed since the 1960s, with the strongest empirical and theoretical support being provided for the family of stable distributions (with the normal distribution being a special case of this distribution). Since the turn of the century, specific forms of the stable distribution have been proposed and tested that better fit the observed behavior of historical return distributions. More specifically, subclasses of the tempered stable distribution have been proposed. In this paper, we propose one such subclass of the tempered stable distribution which we refer to as the "KR distribution". We empirically test this distribution as well as two other recently proposed subclasses of the tempered stable distribution: the Carr-Geman-Madan-Yor (CGMY) distribution and the modified tempered stable (MTS) distribution. The advantage of the KR distribution over the other two distributions is that it has more flexible tail parameters. For these three subclasses of the tempered stable distribution, which are infinitely divisible and have exponential moments for some neighborhood of zero, we generate the exponential Lévy market models induced from them. We then construct a new GARCH model with the infinitely divisible distributed innovation and three subclasses of that GARCH model that incorporates three observed properties of asset returns: volatility clustering, fat tails, and skewness. We formulate the algorithm to find the risk-neutral return processes for those GARCH models using the "change of measure" for the tempered stable distributions. To compare the performance of those exponential Lévy models and the GARCH models, we report the results of the parameters estimated for the S&P 500 index and investigate the out-of-sample forecasting performance for those GARCH models for the S&P 500 option prices.
Computational Statistics & Data Analysis, 2012
A characteristic function-based method is proposed to estimate the time-changed Lévy models, which take into account both stochastic volatility and infinite-activity jumps. The method facilitates computation and overcomes problems related to the discretization error and to the non-tractable probability density. Estimation results and option pricing performance indicate that the infiniteactivity model performs better than the finite-activity one. By introducing a jump component in the volatility process, a double-jump model is also investigated.
Journal of Applied Mathematics, 2013
This paper deals with financial modeling to describe the behavior of asset returns, through consideration of economic cycles together with the stylized empirical features of asset returns such as fat tails. We propose that asset returns are modeled by a stochastic volatility Lévy process incorporating a regime switching model. Based on the risk-neutral approach, there exists a large set of candidates of martingale measures due to the driving of a stochastic volatility Lévy process in the proposed model which renders the market incomplete in general. We first establish an equivalent martingale measure for the proposed model introduced in risk-neutral version. Regime switching of stochastic volatility Lévy process is employed in an approximation mode for model calibration and the calibration of parameters model done based on EM algorithm. Finally, some empirical results are illustrated via applications to the Bangkok Stock Exchange of Thailand index.
Quantitative Finance, 2006
Methodology and Computing in Applied Probability, 2014
Regime-switching models (RSM) have been recently used in the literature as alternatives to the Black-Scholes model. Several authors favor RSM as being more realistic since, by construction, they model exogenous macroeconomic cycles against which asset prices evolve. In the context of derivatives pricing, these models lead to incomplete markets and, therefore, to the existenceof multiple Equivalent Martingale Measures (EMM) that yield dierent pricing rules. A fair amount of literature (Bungton and Elliott (2002), Elliott et al. (2005)) focuses on conveniently choosing a family of EMM leading to closed-form formulas for option prices. These studies often make the assumption that the risk associated with the Markov chain is not priced. Recently, Siu and Yang (2009), proposed an EMM kernel that takes into account all risk components of a regime-switching Black-Scholes model. In this paper, we study two families of EMM and their corresponding implicit assumptions in a more general setting than in Siu and Yang (2009). That is, we study two families of EMM for a general Lévy regime-switching model that allow us to assess the inuence of jumps on the price of risk. We specialize this general framework to Regime-switching Jump-Diusion and Variance-Gamma models and carry out a comparative analysis of the resulting option price formulas with existing regime-switching models such as Naik (1993) and Boyle and Draviam (2007).
Physica A: Statistical Mechanics and its Applications, 2003
In a seminal paper in 1973, Black and Scholes argued how expected distributions of stock prices can be used to price options. Their model assumed a directed random motion for the returns and consequently a lognormal distribution of asset prices after a finite time. We point out two problems with their formulation. First, we show that the option valuation is not uniquely determined; in particular ,strategies based on the delta-hedge and CAPM (the Capital Asset Pricing Model) are shown to provide different valuations of an option. Second, asset returns are known not to be Gaussian distributed. Empirically, distributions of returns are seen to be much better approximated by an exponential distribution. This exponential distribution of asset prices can be used to develop a new pricing model for options that is shown to provide valuations that agree very well with those used by traders. We show how the Fokker-Planck formulation of fluctuations (i.e., the dynamics of the distribution) can be modified to provide an exponential distribution for returns. We also show how a singular volatility can be used to go smoothly from exponential to Gaussian returns and thereby illustrate why exponential returns cannot be reached perturbatively starting from Gaussian ones, and explain how the theory of 'stochastic volatility' can be obtained from our model by making a bad approximation. Finally, we show how to calculate put and call prices for a stretched exponential density.
Journal of Risk and Financial Management
This paper investigates the American option price in a two-state regime-switching model. The dynamics of underlying are driven by a Markov-modulated Geometric Wiener process. That means the interest rate, the appreciation rate, and the volatility of underlying rely on hidden states of the economy which can be interpreted in terms of Markov chains. By means of the homotopy analysis method, an explicit formula for pricing two-state regime-switching American options is presented.
This paper addresses alternative option pricing models and their estimation. The stock price dynamics is modeled by taking into account both stochastic volatility and jumps. Jumps are mimiced by the tempered stable process and stochastic volatility is introduced by time changing the stochastic process. We propose a characteristic function based iterative estimation method, which overcomes the problem of nontractable probability density functions of our models and eases computational difficulty related to other methods. The estimation results and option pricing performance indicate that the infinite activity stochastic volatility model is more preferrable than the finite activity model. We also make an extension to investigate double-jump model by introducing jumps in the variance rate process.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.