Academia.eduAcademia.edu

Effective action and interaction energy of coupled quantum dots

2003, Physical review

Abstract

We obtain the effective action of tunnel-coupled quantum dots, by modeling the system as a Luttinger liquid with multiple barriers. For a double dot system, we find that the resonance conditions for perfect conductance form a hexagon in the plane of the two gate voltages controlling the density of electrons in each dot. We also explicitly obtain the functional dependence of the interaction energy and peak-splitting on the gate voltage controlling tunneling between the dots and their charging energies. Our results are in good agreement with recent experimental results, from which we obtain the Luttinger interaction parameter K = 0.74.