Academia.eduAcademia.edu

Self-induced transparency in InGaAs quantum-dot waveguides

2003, Applied Physics Letters

Abstract

We report the experimental observation and the theoretical modeling of self-induced-transparency signatures such as nonlinear transmission, pulse retardation and reshaping, for subpicosecond pulse propagation in a 2-mm-long InGaAs quantum-dot ridge waveguide in resonance with the excitonic ground-state transition at 10 K. The measurements were obtained by using a cross-correlation frequency-resolved optical gating technique which allows us to retrieve the field amplitude of the propagating pulses.