Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2002, International Conference on Computational Linguistics
…
7 pages
1 file
This paper explores the contribution of a broad range of syntactic features to WSD: grammatical relations coded as the presence of adjuncts/arguments in isolation or as subcategorization frames, and instantiated grammatical relations between words. We have tested the performance of syntactic features using two different ML algorithms (Decision Lists and AdaBoost) on the Senseval-2 data. Adding syntactic features to a basic set of traditional features improves performance, especially for AdaBoost. In addition, several methods to build arbitrarily high accuracy WSD systems are also tried, showing that syntactic features allow for a precision of 86% and a coverage of 26% or 95% precision and 8% coverage.
2004
Although syntactic features offer more specific information about the context surrounding a target word in a Word Sense Disambiguation (WSD) task, in general, they have not distinguished themselves much above positional features such as bag-of-words. In this paper we offer two methods for increasing the recall rate when using syntactic features on the WSD task by: 1) using an algorithm for discovering in the corpus every possible syntactic feature involving a target word, and 2) using wildcards in place of the lemmas in the templates of the syntactic features. In the best experimental results on the SENSEVAL-2 data we achieved an Fmeasure of 53.1% which is well above the mean F-measure performance of official SENSEVAL-2 entries, of 44.2%. These results are encouraging considering that only one kind of feature is used and only a simple Support Vector Machine (SVM) running with the defaults is used for the machine learning.
2006
In the Natural Language Processing (NLP) community, Word Sense Disambiguation (WSD) has been described as the task which selects the appropriate meaning (sense) to a given word in a text or discourse where this meaning is distinguishable from other senses potentially attributable to that word. These senses could be seen as the target labels of a classification problem. That is, Machine Learning (ML) seems to be a possible way to tackle this problem.
2004
The success of supervised learning approaches to word sense disambiguation is largely dependent on the features used to represent the context in which an ambiguous word occurs. Previous work has reached mixed conclusions; some suggest that combinations of syntactic and lexical features will perform most effectively. However, others have shown that simple lexical features perform well on their own. This paper evaluates the effect of using different lexical and syntactic features both individually and in combination. We show that it is possible for a very simple ensemble that utilizes a single lexical feature and a sequence of part of speech features to result in disambiguation accuracy that is near state of the art.
Information, 2019
The paper presents a flexible system for extracting features and creating training and testexamples for solving the all-words sense disambiguation (WSD) task. The system allowsintegrating word and sense embeddings as part of an example description. The system possessestwo unique features distinguishing it from all similar WSD systems—the ability to construct aspecial compressed representation for word embeddings and the ability to construct training andtest sets of examples with different data granularity. The first feature allows generation of data setswith quite small dimensionality, which can be used for training highly accurate classifiers ofdifferent types. The second feature allows generating sets of examples that can be used for trainingclassifiers specialized in disambiguating a concrete word, words belonging to the samepart-of-speech (POS) category or all open class words. Intensive experimentation has shown thatclassifiers trained on examples created by the system outperfo...
This paper shows that our WSD system using rich linguistic features achieved high accuracy in the classification of English SENSEVAL2 verbs for both fine-grained (64.6%) and coarse-grained (73.7%) senses. We describe three specific enhancements to our treatment of rich linguistic features and present their separate and combined contributions to our system's performance. Further experiments showed that our system had robust performance on test data without high quality rich features.
Journal of Natural Language Processing, 2009
Traditionally, many researchers have addressed word sense disambiguation (WSD) as an independent classification problem for each word in a sentence. However, the problem with their approaches is that they disregard the interdependencies of word senses. Additionally, since they construct an individual sense classifier for each word, their method is limited in its applicability to the word senses for which training instances are served. In this paper, we propose a supervised WSD model based on the syntactic dependencies of word senses. In particular, we assume that strong dependencies between the sense of a syntactic head and those of its dependents exist. We describe these dependencies on the tree-structured conditional random fields (T-CRFs), and obtain the most appropriate assignment of senses optimized over the sentence. Furthermore, we incorporate these sense dependencies in combination with various coarse-grained sense tag sets, which are expected to relieve the data sparseness problem, and enable our model to work even for words that do not appear in the training data. In experiments, we display the appropriateness of considering the syntactic dependencies of senses, as well as the improvements by the use of coarse-grained tag sets. The performance of our model is shown to be comparable to those of state-ofthe-art WSD systems. We also present an in-depth analysis of the effectiveness of the sense dependency features by showing intuitive examples.
Meeting of the Association for Computational Linguistics, 2004
Supervised learning methods for WSD yield better performance than unsupervised methods. Yet the availability of clean training data for the former is still a severe challenge. In this paper, we present an unsupervised bootstrapping approach for WSD which exploits huge amounts of automatically gen- erated noisy data for training within a supervised learning framework. The method is evaluated using the
Workshop Programme, 2004
Word Sense Disambiguation confronts with the lack of syntagmatic information associated to word senses: the “gap” between lexicon (here EuroWordNet, EWN) and corpus. In the present work we propose to fill this gap by applying different strategies: from one side, we extract paradigmatic information related to the ambiguous occurrence in a syntactic pattern from corpus and we incorporate it into the WSD process; from the other side, we derive discriminatory sets of senses from EWN for the ambiguous word and so ...
2015
In this paper we present an approach for the enrichment of WSD knowledge bases with data-driven relations from a gold standard corpus (annotated with word senses, valency information, syntactic analyses, etc.). We focus on Bulgarian as a use case, but our approach is scalable to other languages as well. For the purpose of exploring such methods, the Personalized Page Rank algorithm was used. The reported results show that the addition of new knowledge improves the accuracy of WSD with approximately 10.5%.
Natural Language Engineering, 2002
Has system performance on Word Sense Disambiguation (WSD) reached a limit? Automatic systems don't perform nearly as well as humans on the task, and from the results of the SENSEVAL exercises, recent improvements in system performance appear negligible or even negative. Still, systems do perform much better than the baselines, so something is being done right. System evaluation is crucial to explain these results and to show the way forward. Indeed, the success of any project in WSD is tied to the evaluation methodology used, and especially to the formalization of the task that the systems perform. The evaluation of WSD has turned out to be as difficult as designing the systems in the first place.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Revista Espanola De Linguistica Aplicada, 2009
Proceedings of the 2nd workshop on Learning language in logic and the 4th conference on Computational natural language learning -, 2000
Lecture Notes in Computer Science, 2000
Congreso de la SEPLN, 2004
Computing Research Repository, 2000