Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2009
Previous work on graph visualization has yielded a wealth of efficient graph analysis algorithms and expressive visual mappings. To support the visual exploration of graph structures, a high degree of interactivity is required as well.
We present a novel platform for the interactive visualization of very large graphs. The platform enables the user to interact with the visualized graph in a way that is very similar to the exploration of maps at multiple levels. Our approach involves an offline preprocessing phase that builds the layout of the graph by assigning coordinates to its nodes with respect to a Euclidean plane. The respective points are indexed with a spatial data structure, i.e., an R-tree, and stored in a database. Multiple abstraction layers of the graph based on various criteria are also created offline, and they are indexed similarly so that the user can explore the dataset at different levels of granularity, depending on her particular needs. Then, our system translates user operations into simple and very efficient spatial operations (i.e., window queries) in the backend. This technique allows for a fine-grained access to very large graphs with extremely low latency and memory requirements and without compromising the functionality of the tool. Our web-based prototype supports three main operations: (1) interactive navigation, (2) multi-level exploration, and (3) keyword search on the graph metadata.
Electronic Imaging, 2018
We present BGS (Big Graph Surfer), a scalable graph visualization tool that creates hierarchical structure from original graphs and provide interactive navigation along the hierarchy by expanding or collapsing clusters when visualizing large-scale graphs. A distributed computing framework-Spark provides the backend for BGS on clustering and visualization. This architecture makes it capable of visualizing a graph bigger than 1 billion nodes or edges in real-time after preprocessing. In addition, BGS provides a series of hierarchy and graph exploration methods, such as hierarchy view, hierarchy navigation, hierarchy search, graph view, graph navigation, graph search, and other useful interactions. These functionalities facilitate the exploration of very large-scale graphs. To evaluate the effectiveness of BGS, we apply BGS to several large-scale graph datasets, and discuss its scalability, usability, and flexibility.
2006
Abstract Several graph visualization tools exist. However, they are not able to handle large graphs, and/or they do not allow interaction. We are interested on large graphs, with hundreds of thousands of nodes. Such graphs bring two challenges: the first one is that any straightforward interactive manipulation will be prohibitively slow.
Internet Mathematics, 2011
Network visualization tools offer features enabling a variety of analyses to satisfy diverse requirements. Considering complexity and diversity of data and tasks, there is no single best layout, no single best file format or visualization tool: one size does not fit all. One way to cope with these dynamics is to support multiple scenarios and workflows. NAViGaTOR (Network Analysis, Visualization
IEEE VGTC Pacific …, 2008
2010
We present a tool for interactive exploration of graphs that integrates advanced graph mining methods in an interactive visualization framework. The tool enables efficient exploration and analysis of complex graph structures. For flexible integration of state-of-the-art graph mining methods, the viewer makes use of the open source data mining platform KNIME. In contrast to existing graph visualization interfaces, all parts of the interface can be dynamically changed to specific visualization requirements, including the use of node type dependent icons, methods for a marking if nodes or edges and highlighting and a fluent graph that allows for iterative growing, shrinking and abstraction of (sub)graphs.
Computer Graphics Forum, 2011
The analysis of large graphs plays a prominent role in various fields of research and is relevant in many important application areas. Effective visual analysis of graphs requires appropriate visual presentations in combination with respective user interaction facilities and algorithmic graph analysis methods. How to design appropriate graph analysis systems depends on many factors, including the type of graph describing the data, the analytical task at hand, and the applicability of graph analysis methods. The most recent surveys of graph visualization and navigation techniques cover techniques that had been introduced until 2000 or concentrate only on graph layouts published until 2002. Recently, new techniques have been developed covering a broader range of graph types, such as time-varying graphs. Also, in accordance with ever growing amounts of graph-structured data becoming available, the inclusion of algorithmic graph analysis and interaction techniques becomes increasingly important. In this State-of-the-Art Report, we survey available techniques for the visual analysis of large graphs. Our review firstly considers graph visualization techniques according to the type of graphs supported. The visualization techniques form the basis for the presentation of interaction approaches suitable for visual graph exploration. As an important component of visual graph analysis, we discuss various graph algorithmic aspects useful for the different stages of the visual graph analysis process. We also present main open research challenges in this field.
We describe ASK-GraphView, a node-link-based graph visualization system that allows clustering and interactive navigation of large graphs, ranging in size up to 16 million edges. The system uses a scalable architecture and a series of increasingly sophisticated clustering algorithms to construct a hierarchy on an arbitrary, weighted undirected input graph. By lowering the interactivity requirements we can scale to substantially bigger graphs. The user is allowed to navigate this hierarchy in a top down manner by interactively expanding individual clusters. ASK-GraphView also provides facilities for filtering and coloring, annotation and cluster labeling.
International Journal on Advanced Science, Engineering and Information Technology
In this paper, three different methods for software visualization of large graph structures, respectively Rectangle, Intersection and Combined are presented. The basic concepts for using software development environments are outlined. Their capabilities for visual designing and event-oriented programming are discussed. A brief analysis of the basic features of the environment used to develop the ClipRect Monitor application is made. The main functions of this software are also presented. All experimental results in this study are generated with this application. According to the methodology, six graphs are prepared to determine the effectiveness of the three methods. The number of vertices and the edges of these graphs are proportional to the size of the drawing area (canvas). The drawing areas are also six and have different sizes, such that each subsequent area has a height and width twice the size of the previous one. Besides, for all areas, the width/height ratio is exactly 16:9. This ratio is widely used in monitors as well as laptops, mobile phones and tablets. The largest drawing area that the ClipRect Monitor application scanned during the experiments is 128 000 x 72 000 pixels. This scan is performed for graph G_6 with 1 415 vertices and 100 000 edges. The visualization area is diagonally positioned relative to the drawing area. For each visualization area, each of the three methods, respectively Rectangle, Intersection and Combined is performed. The Combined method executes the Rectangle method first and then the Intersection method. The results show that the Intersection method was the slowest compared to the other two methods in terms of the number of edges of the graph that are analyzed. When the visualization area is internal to the drawing area, the Rectangle method performs better than the Combined method. The Rectangle method gives the best result in terms of time for analysis and drawing of the edges of the graph. The Combined method combines the characteristics of the other two methods. This method is optimal in terms of the time of analysis of the need to draw the edges of the graph relative to the number of drawn edges.
Revista de Informática Teórica e Aplicada, 2008
Graphs are widely utilized in many fields and several applications require their visualization. Graph visualization is based on techniques for graph drawing, interaction and navigation in such a way that helps the user in finding and manipulating information efficiently. These techniques, which can be two or three-dimensional, depending on the spatial metaphor used to represent the graph, can be combined in many different ways in order to fit a particular application's needs. This paper presents an overview of the field of graph visualization.
IV Workshop on Information Visualization and Analysis in Social Networks - Brazilian Symposium on Databases, 2008
Graphs are abstract representations that can describe a large set of real world phenomena and that, possibly, scale to the order of hundreds of thousands of nodes and millions of edges. Benefiting from such graphs can be better performed by means of visual interaction. However, in the domain of large graphs, excessive processing and limited display space bound the possibilities for visual presentation and processing. In this line, we introduce GMine, a prototype system that uses an innovative data structure, the Graph-Tree. The engineering of GMine allows for scalability over huge graphs stored on disk, an extended graph representation embracing both hierarchical and plain organization, and the interactive browsing of graph hierarchies.
Indian Scientific Journal Of Research In Engineering And Management, 2024
The ability to visualize and comprehend complex network structures is crucial in various domains, including social media analysis, computer networks, and transportation systems. However, visualizing large-scale graphs poses significant challenges due to computational limitations and rendering performance constraints. This research paper presents a novel approach to real-time graph visualization using JavaFX, a powerful Java-based framework for developing rich client applications. By leveraging efficient data structures, rendering optimizations, and multithreading techniques, our proposed system achieves real-time visualization of large-scale graphs, enabling users to explore and interact with dynamic network structures seamlessly. The system incorporates advanced layout algorithms and visual encodings to enhance the clarity and interpretability of the visualizations. Extensive experiments were conducted using real-world and synthetic datasets to evaluate the system's performance, scalability, and usability. The results demonstrate the effectiveness of our approach in rendering large graphs in real-time, outperforming existing techniques. Furthermore, a user study was conducted to assess the system's usability and gather feedback on interaction and exploration features, highlighting potential applications in various domains.
Proceedings of the ACM first Ph. …, 2007
In Knowledge engineering, synthesized information has often an evolving and relational form. Information representation using graphs may ease data interpretation for non-expert users. However this graph may be complex and simplifications are useful in order to ease analysis. In this article, we present VisuGraph, a powerful tool for graph drawing. This tool gives the possibility to reduce large graph by two techniques: the Markov CLustering algorithm (MCL) application and the global graph division in time-sliced visualizations in order to specify and to simplify temporal analysis.
Figure 1: Illustrated hierarchical taxonomy of dynamic graph visualization techniques; the number of published techniques per taxonomic category is encoded in the brightness of the background (for details see Table 4).
Computers & Graphics, 2006
In this paper we describe a new, multi-graph approach for development of a comprehensive set of complexity management techniques for interactive graph visualization tools. This framework facilitates efficient implementation of management of multiple associated graphs with navigation links and nesting of graphs as well as ghosting, folding and hiding of unwanted graph elements. The theoretical analyses show that the involved data structures and operations on them are quite efficient, and an implementation in a graph drawing tool has proven to be successful.
Applied Sciences
Advances in data generation and acquisition have resulted in a volume of available data of such magnitude that our ability to interpret and extract valuable knowledge from them has been surpassed. Our capacity to analyze data is hampered not only by their amount or their dimensionality, but also by their relationships and by the complexity of the systems they model. Compound graphs allow us to represent the existing relationships between nodes that are themselves hierarchically structured, so they are a natural substrate to support multiscale analysis of complex graphs. This paper presents Carbonic, a framework for interactive multiscale visual exploration and editing of compound graphs that incorporates several strategies for complexity management. It combines the representation of graphs at multiple levels of abstraction, with techniques for reducing the number of visible elements and for reducing visual cluttering. This results in a tool that allows both the exploration of existi...
2012
Abstract Visual methods for supporting the characterization, comparison, and classification of large networks remain an open challenge. Ideally, such techniques should surface useful structural features--such as effective diameter, small-world properties, and structural holes--not always apparent from either summary statistics or typical network visualizations.
Computer Graphics Forum, 2016
Dynamic graph visualization focuses on the challenge of representing the evolution of relationships between entities in readable, scalable and effective diagrams. This work surveys the growing number of approaches in this discipline. We derive a hierarchical taxonomy of techniques by systematically categorizing and tagging publications. While static graph visualizations are often divided into node-link and matrix representations, we identify the representation of time as the major distinguishing feature for dynamic graph visualizations: either graphs are represented as animated diagrams or as static charts based on a timeline. Evaluations of animated approaches focus on dynamic stability for preserving the viewer's mental map or, in general, compare animated diagrams to timeline-based ones. A bibliographic analysis provides insights into the organization and development of the field and its community. Finally, we identify and discuss challenges for future research. We also provide feedback from experts, collected with a questionnaire, which gives a broad perspective of these challenges and the current state of the field.
IEEE Transactions on Visualization and Computer Graphics, 2000
This is a survey on graph visualization and navigation techniques, as used in information visualization. Graphs appear in numerous applications such as web browsing, state-transition diagrams, and data structures. The ability to visualize and to navigate in these potentially large, abstract graphs is often a crucial part of an application. Information visualization has specific requirements, which means that this survey approaches the results of traditional graph drawing from a different perspective.
Ninth International Conference on Information Visualisation (IV'05), 2005
Visualising large graphs faces the challenges of both data complexity and visual complexity. This paper presents a framework for visualising large graphs that reduces data complexity using the clustered graph model and provides users with navigational approaches for browsing clustered graphs. A key design task of such a system is to define a strategy for generating logical abstractions of a clustered graph during navigation. An appropriate abstraction strategy should represent a clustered graph well and avoid visual overload. The semantic fisheye view of a clustered graph is proposed for such a purpose. Two case studies were investigated, and the experiment results show that during navigation the first-order fisheye view of a clustered graph conserves visual complexity at a constant level.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.