Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2018, Communicative & Integrative Biology
https://doi.org/10.1080/19420889.2018.1467188…
6 pages
1 file
Respiratory burst oxidase homologs (RBOHs) constitute a multigene family in plants. These reactive oxygen species (ROS)-generating enzymes participate in diverse biological processes. We previously demonstrated that PvRbohB plays an important role in lateral root (LR) development in Phaseolus vulgaris. However, little is known about the roles of other Rboh members in root development. Here, we report that PvRbohA is involved in LR emergence in P. vulgaris. PvRbohA was expressed in wild-type P. vulgaris root tissues, e.g., the radicle, inter LR zone, and LR zone, and its expression increased during LR formation. Analysis of the spatio-temporal expression patterns of a reporter construct under the control of the PvRbohA promoter (PvRbohA::GUS-GFP) in transgenic roots showed that PvRbohA was active at all three stages of LR development, but its spatial expression pattern varied at each stage. The relative expression levels of PvRbohA during LR formation correlated with the activity of PvRbohA promoter. Furthermore, upon PvRbohA transcript silencing, LR growth was significantly altered in transgenic hairy roots. These findings suggest that RbohA participates in LR initiation, emergence, and development in the legume P. vulgaris by delimiting the region for LR emergence.
Plant Signaling & Behavior, 2013
Development (Cambridge, England), 2016
Lateral root (LR) emergence represents a highly coordinated process in which the plant hormone auxin plays a central role. Reactive oxygen species (ROS) have been proposed to function as important signals during auxin-regulated LR formation, however their mode of action is poorly understood. Here, we report that Arabidopsis roots exposed to ROS show increased LR numbers due to the activation of LR pre-branch sites and LR primordia (LRP). Strikingly, ROS treatment can also restore LR formation in pCASP1:shy2-2 and aux1 lax3 mutant lines in which auxin-mediated cell wall accommodation and remodeling in cells overlying the sites of LR formation is disrupted. Specifically, ROS are deposited in the apoplast of these cells during LR emergence, following a spatio-temporal pattern that overlaps the combined expression domains of extracellular ROS donors of the RESPIRATORY BURST OXIDASE HOMOLOGS (RBOH) We also show that disrupting (or enhancing) expression of RBOH in LRP and/or overlying roo...
Plant physiology, 2014
Overall root architecture is the combined result of primary and lateral root growth and is influenced by both intrinsic genetic programs and external signals. One of the main questions for root biologists is how plants control the number of lateral root primordia and their emergence through the main root. We recently identified S-phase kinase-associated protein2 (SKP2B) as a new early marker for lateral root development. Here, we took advantage of its specific expression pattern in Arabidopsis (Arabidopsis thaliana) in a cell-sorting and transcriptomic approach to generate a lateral root-specific cell sorting SKP2B data set that represents the endogenous genetic developmental program. We first validated this data set by showing that many of the identified genes have a function during root growth or lateral root development. Importantly, genes encoding peroxidases were highly represented in our data set. Thus, we next focused on this class of enzymes and showed, using genetic and che...
Plant Diversity
Reactive oxygen species (ROS) are widely generated in various redox reactions in plants. In earlier studies, ROS were considered toxic byproducts of aerobic metabolism. In recent years, it has become clear that ROS act as plant signaling molecules that participate in various processes such as growth and development. Several studies have elucidated the roles of ROS from seed germination to senescence. However, there is much to discover about the diverse roles of ROS as signaling molecules and their mechanisms of sensing and response. ROS may provide possible benefits to plant physiological processes by supporting cellular proliferation in cells that maintain basal levels prior to oxidative effects. Although ROS are largely perceived as either negative by-products of aerobic metabolism or makers for plant stress, elucidating the range of functions that ROS play in growth and development still require attention.
PLANT PHYSIOLOGY, 2012
The rolB (for rooting locus of Agrobacterium rhizogenes) oncogene has previously been identified as a key player in the formation of hairy roots during the plant-A. rhizogenes interaction. In this study, using single-cell assays based on confocal microscopy, we demonstrated reduced levels of reactive oxygen species (ROS) in rolB-expressing Rubia cordifolia, Panax ginseng, and Arabidopsis (Arabidopsis thaliana) cells. The expression of rolB was sufficient to inhibit excessive elevations of ROS induced by paraquat, menadione, and light stress and prevent cell death induced by chronic oxidative stress. In rolB-expressing cells, we detected the enhanced expression of antioxidant genes encoding cytosolic ascorbate peroxidase, catalase, and superoxide dismutase. We conclude that, similar to pathogenic determinants in other pathogenic bacteria, rolB suppresses ROS and plays a role not only in cell differentiation but also in ROS metabolism. a RNA samples were isolated from callus cultures during the linear phase of growth (20-22 d). Two RNA samples were analyzed with three analytical repetitions. b Dashes indicate the absence of expression. The data are presented as mean 6 SE. * P , 0.05 versus values of the control cultures, ANOVA followed by Fisher's PLSD test.
Scientific reports, 2016
Maintaining reactive oxygen species (ROS) homeostasis plays a central role in plants, and is also critical for plant root development. Threshold levels of ROS act as signals for elongation and differentiation of root cells. The protein phosphatase LIKE SEX FOUR2 (LSF2) has been reported to regulate starch metabolism in Arabidopsis, but little is known about the mechanism how LSF2 affect ROS homeostasis. Here, we identified that LSF2 function as a component modulating ROS homeostasis in response to oxidative stress and, thus regulate root development. Compared with wild type Arabidopsis, lsf2-1 mutant exhibited reduced rates of superoxide generation and higher levels of hydrogen peroxide upon oxidative stress treatments. The activities of several antioxidant enzymes, including superoxide dismutase, catalase, and ascorbate peroxidase, were also affected in lsf2-1 mutant under these oxidative stress conditions. Consequently, lsf2-1 mutant exhibited the reduced root growth but less inhi...
Plant and Cell Physiology, 2010
conditions that mediate oxidative stress. To study its biological role and its ability to confer stress resistance in plants, we tried to obtain transgenic plants overexpressing citrus ( Citrus sinensis ) PHGPx (cit-PHGPx). All attempts to obtain regenerated plants expressing this enzyme constitutively failed. However, when the enzyme's catalytic activity was abolished by active site-directed mutagenesis, transgenic plants constitutively expressing inactive cit-PHGPx were successfully regenerated. Constitutive expression of enzymatically active cit-PHGPx could only be obtained when transformation was based on non-regenerative processes. These results indicate that overexpression of the antioxidant enzyme PHGPx interferes with shoot organogenesis and suggests the involvement of reactive oxygen species (ROS) in this process. Using transgenic tobacco ( Nicotiana tabacum ) leaves obtained from plants transformed with a β -estradiol-inducible promoter, timedependent induction of cit-PHGPx expression was employed. A pronounced inhibitory effect of cit-PHGPx on shoot formation was found to be limited to the early stage of the regeneration process. Monitoring the ROS level during regeneration revealed that upon cit-PHGPx induction, the lowest level of ROS correlated with the maximal level of shoot inhibition. Our results clearly demonstrate the essential role of ROS in the early stages of in vitro shoot organogenesis and the possible involvement of PHGPx in maintaining ROS homeostasis at this point.
The Plant Cell, 2004
Plant respiratory burst oxidase homologs (Rboh) are homologs of the human neutrophil pathogen-related gp91phox. Antisense technology was employed to ascertain the biological function of Lycopersicon esculentum (tomato) Rboh. Lines with diminished Rboh activity showed a reduced level of reactive oxygen species (ROS) in the leaf, implying a role for Rboh in establishing the cellular redox milieu. Surprisingly, the antisense plants acquired a highly branched phenotype, switched from indeterminate to determinate growth habit, and had fasciated reproductive organs. Wound-induced systemic expression of proteinase inhibitor II was compromised in the antisense lines, indicating that ROS intermediates supplied by Rboh are required for this wound response. Extending these observations by transcriptome analysis revealed ectopic leaf expression of homeotic MADS box genes that are normally expressed only in reproductive organs. In addition, both Rboh-dependent and -independent wound-induced gene...
Frontiers in Plant Science, 2016
Reactive oxygen species (ROS) are generated inevitably in the redox reactions of plants, including respiration and photosynthesis. In earlier studies, ROS were considered as toxic by-products of aerobic pathways of the metabolism. But in recent years, concept about ROS has changed because they also participate in developmental processes of plants by acting as signaling molecules. In plants, ROS regulate many developmental processes such as cell proliferation and differentiation, programmed cell death, seed germination, gravitropism, root hair growth and pollen tube development, senescence, etc. Despite much progress, a comprehensive update of advances in the understanding of the mechanisms evoked by ROS that mediate in cell proliferation and development are fragmentry and the matter of ROS perception and the signaling cascade remains open. Therefore, keeping in view the above facts, an attempt has been made in this article to summarize the recent findings regarding updates made in the regulatory action of ROS at various plant developmental stages, which are still not well-known.
Plant and Cell Physiology, 2012
Plant NADPH oxidases [respiratory burst oxidase homologs (RBOHs)] have emerged as key players in the regulation of plant-pathogen interactions. Nonetheless, their role in mutualistic associations, such as the rhizobia-legume symbiosis, is poorly understood. In this work, nine members of the Phaseolus vulgaris Rboh gene family were identified. The transcript of one of these, PvRbohB, accumulated abundantly in shoots, roots and nodules. PvRbohB promoter activity was detected in meristematic regions of P. vulgaris roots, as well as during infection thread (IT) progression and nodule development. RNA interference (RNAi)-mediated PvRbohB down-regulation in transgenic roots reduced reactive oxygen species (ROS) production and lateral root density, and greatly impaired nodulation. Microscopy analysis revealed that progression of the ITs was impeded at the base of root hairs in PvRbohB-RNAi roots. Furthermore, the few nodules that formed in PvRbohB-down-regulated roots displayed abnormally wide ITs and reduced nitrogen fixation. These findings indicate that this common bean NADPH oxidase is crucial for successful rhizobial colonization and probably maintains proper IT growth and shape.
Frontiers in plant science, 2017
Reactive oxygen species (ROS) produced by respiratory burst oxidase homologs (RBOHs) regulate numerous plant cell processes, including the symbiosis between legumes and nitrogen-fixing bacteria. Rapid and transient ROS production was reported after Phaseolus vulgaris root hairs were treated with Nod factors, indicating the presence of a ROS-associated molecular signature in the symbiosis signaling pathway. Rboh is a multigene family containing nine members (RbohA-I) in P. vulgaris. RNA interference of RbohB suppresses ROS production and attenuates rhizobial infection thread (IT) progression in P. vulgaris root hairs. However, the roles of other Rboh members in symbiotic interactions are largely unknown. In this study, we characterized the role of the NADPH oxidase-encoding gene RbohA (Phvulv091020621) in the P. vulgaris-Rhizobium tropici symbiosis. The spatiotemporal activity of the RbohA promoter colocalized with growing ITs and was associated with vascular bundles in developing no...
Science Signaling, 2009
The following resources related to this article are available online at http://stke.sciencemag.org.
Current Science
This article highlights the physiological and molecular language that exploits redox pathways to modulate hormonal function and, transcriptional regulation of gene expression associated with adventitious root formation (ARF) in plants. The role of plant growth regulators that exploit the redox cue either by activating the NADPH-oxidase or modulating antioxidantcoupled redox signalling during ARF is also elaborated. We also elaborate upon various transcriptomic studies on the role of reactive oxygen species in upregulation of various proteins and transcription factors involved in cell cycle and cell division, hormone signalling, amino acid synthesis, protein processing, transport and cell-wall modification.
The Plant Cell, 2017
Reactive oxygen species (ROS) produced by the NADPH oxidase, respiratory burst oxidase homolog (RBOH), trigger signal transduction in diverse biological processes in plants. However, the functions of RBOH homologs in rice (Oryza sativa) and other gramineous plants are poorly understood. Ethylene induces the formation of lysigenous aerenchyma, which consists of internal gas spaces created by programmed cell death of cortical cells, in roots of gramineous plants under oxygen-deficient conditions. Here, we report that, in rice, one RBOH isoform (RBOHH) has a role in ethylene-induced aerenchyma formation in roots. Induction of RBOHH expression under oxygen-deficient conditions was greater in cortical cells than in cells of other root tissues. In addition, genes encoding group I calcium-dependent protein kinases (CDPK5 and CDPK13) were strongly expressed in root cortical cells. Coexpression of RBOHH with CDPK5 or CDPK13 induced ROS production in Nicotiana benthamiana leaves. Inhibitors of RBOH activity or cytosolic calcium influx suppressed ethylene-induced aerenchyma formation. Moreover, knockout of RBOHH by CRISPR/Cas9 reduced ROS accumulation and inducible aerenchyma formation in rice roots. These results suggest that RBOHH-mediated ROS production, which is stimulated by CDPK5 and/or CDPK13, is essential for ethylene-induced aerenchyma formation in rice roots under oxygen-deficient conditions.
Development, 2018
Reactive oxygen species (ROS) are produced by metabolic pathways in almost all cells. As signaling components, ROS are best known for their roles in abiotic and biotic stress-related events. However, recent studies have revealed that they are also involved in numerous processes throughout the plant life cycle, from seed development and germination, through to root, shoot and flower development. Here, we provide an overview of ROS production and signaling in the context of plant growth and development, highlighting the key functions of ROS and their interactions with plant phytohormonal networks.
Frontiers in Plant Science
Plant respiratory burst oxidase homologs (RBOHs) are plasma membrane-localized NADPH oxidases that generate superoxide anion radicals, which then dismutate to H2O2, into the apoplast using cytoplasmic NADPH as an electron donor. PaRBOH1 is the most highly expressed RBOH gene in developing xylem as well as in a lignin-forming cell culture of Norway spruce (Picea abies L. Karst.). Since no previous information about regulation of gymnosperm RBOHs exist, our aim was to resolve how PaRBOH1 is regulated with a focus on phosphorylation. The N-terminal part of PaRBOH1 was found to contain several putative phosphorylation sites and a four-times repeated motif with similarities to the Botrytis-induced kinase 1 target site in Arabidopsis AtRBOHD. Phosphorylation was indicated for six of the sites in in vitro kinase assays using 15 amino-acid-long peptides for each of the predicted phosphotarget site in the presence of protein extracts of developing xylem. Serine and threonine residues showing...
Molecular Plant, 2019
As non-photosynthesizing organs, roots are dependent on diffusion of oxygen from the external environment and, in some instances, from the shoot for their aerobic metabolism. Establishment of hypoxic niches in the developing tissues of plants has been postulated as a consequence of insufficient diffusion of oxygen to satisfy the demands throughout development. Here, we report that such niches are established at specific stages of lateral root primordia development in Arabidopsis thaliana grown under aerobic conditions. Using gain-and loss-of-function mutants, we show that ERF-VII transcription factors, which mediate hypoxic responses, control root architecture by acting in cells with a high level of auxin signaling. ERF-VIIs repress the expression of the auxin-induced genes LBD16, LBD18, and PUCHI, which are essential for lateral root development, by binding to their promoters. Our results support a model in which the establishment of hypoxic niches in the developing lateral root primordia contributes to the shutting down of key auxin-induced genes and regulates the production of lateral roots.
THE PLANT CELL ONLINE, 2004
Plant respiratory burst oxidase homologs (Rboh) are homologs of the human neutrophil pathogen-related gp91 phox . Antisense technology was employed to ascertain the biological function of Lycopersicon esculentum (tomato) Rboh. Lines with diminished Rboh activity showed a reduced level of reactive oxygen species (ROS) in the leaf, implying a role for Rboh in establishing the cellular redox milieu. Surprisingly, the antisense plants acquired a highly branched phenotype, switched from indeterminate to determinate growth habit, and had fasciated reproductive organs. Wound-induced systemic expression of proteinase inhibitor II was compromised in the antisense lines, indicating that ROS intermediates supplied by Rboh are required for this wound response. Extending these observations by transcriptome analysis revealed ectopic leaf expression of homeotic MADS box genes that are normally expressed only in reproductive organs. In addition, both Rbohdependent and -independent wound-induced gene induction was detected as well as transcript changes related to redox maintenance. The results provide novel insights into how the steady state cellular level of ROS is controlled and portrays the role of Rboh as a signal transducer of stress and developmental responses.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.