Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2020, Digital Signal Processing
…
28 pages
1 file
Graph signal processing deals with signals which are observed on an irregular graph domain. While many approaches have been developed in classical graph theory to cluster vertices and segment large graphs in a signal independent way, signal localization based approaches to the analysis of data on graph represent a new research direction which is also a key to big data analytics on graphs. To this end, after an overview of the basic definitions of graphs and graph signals, we present and discuss a localized form of the graph Fourier transform. To establish analogy with classical signal processing, spectral domain and vertex domain definitions of the localization window are given next. The spectral and vertex localization kernels are then related to the wavelet transform, followed by their polynomial approximations and a study of filtering and inversion operations. For rigor, the analysis of energy representation and frames in the localized graph Fourier transform is extended to the energy forms of vertex-frequency distributions, which operate even without the requirement to apply localization windows. Another link with classical signal processing is established through the concept of local smoothness, which is subsequently related to the paradigm of signal smoothness on graphs, a lynchpin which connects the properties of the signals on graphs and graph topology. This all represents a comprehensive account of the relation of general vertex-frequency analysis with classical time-frequency analysis, an important but missing link for more advanced applications of graph signal processing. The theory is supported by illustrative and practically relevant examples.
ArXiv, 2019
Graph signal processing deals with signals which are observed on an irregular graph domain. While many approaches have been developed in classical graph theory to cluster vertices and segment large graphs in a signal independent way, signal localization based approaches to the analysis of data on graph represent a new research direction which is also a key to big data analytics on graphs. To this end, after an overview of the basic definitions in graphs and graph signals, we present and discuss a localized form of the graph Fourier transform. To establish an analogy with classical signal processing, spectral- and vertex-domain definitions of the localization window are given next. The spectral and vertex localization kernels are then related to the wavelet transform, followed by a study of filtering and inversion of the localized graph Fourier transform. For rigour, the analysis of energy representation and frames in the localized graph Fourier transform is extended to the energy fo...
2019
Graph signal processing deals with signals which are observed on an irregular graph domain. While many approaches have been developed in classical graph theory to cluster vertices and segment large graphs in a signal independent way, signal localization based approaches to the analysis of data on graph represent a new research direction which is also a key to big data analytics on graphs. To this end, after an overview of the basic definitions in graphs and graph signals, we present and discuss a localized form of the graph Fourier transform. To establish an analogy with classical signal processing, spectral- and vertex-domain definitions of the localization window are given next. The spectral and vertex localization kernels are then related to the wavelet transform, followed by a study of filtering and inversion of the localized graph Fourier transform. For rigour, the analysis of energy representation and frames in the localized graph Fourier transform is extended to the energy fo...
IEEE Signal Processing Magazine, 2000
In applications such as social, energy, transportation, sensor, and neuronal networks, high-dimensional data naturally reside on the vertices of weighted graphs. The emerging field of signal processing on graphs merges algebraic and spectral graph theoretic concepts with computational harmonic analysis to process such signals on graphs. In this tutorial overview, we outline the main challenges of the area, discuss different ways to define graph spectral domains, which are the analogues to the classical frequency domain, and highlight the importance of incorporating the irregular structures of graph data domains when processing signals on graphs. We then review methods to generalize fundamental operations such as filtering, translation, modulation, dilation, and downsampling to the graph setting, and survey the localized, multiscale transforms that have been proposed to efficiently extract information from high-dimensional data on graphs. We conclude with a brief discussion of open issues and possible extensions.
arXiv: Signal Processing, 2020
We propose a new point of view in the study of Fourier analysis on graphs, taking advantage of localization in the Fourier domain. For a signal $f$ on vertices of a weighted graph $\mathcal{G}$ with Laplacian matrix $\mathcal{L}$, standard Fourier analysis of $f$ relies on the study of functions $g(\mathcal{L})f$ for some filters $g$ on $I_\mathcal{L}$, the smallest interval containing the Laplacian spectrum ${\rm sp}(\mathcal{L}) \subset I_\mathcal{L}$. We show that for carefully chosen partitions $I_\mathcal{L} = \sqcup_{1\leq k\leq K} I_k$ ($I_k \subset I_\mathcal{L}$), there are many advantages in understanding the collection $(g(\mathcal{L}_{I_k})f)_{1\leq k\leq K}$ instead of $g(\mathcal{L})f$ directly, where $\mathcal{L}_I$ is the projected matrix $P_I(\mathcal{L})\mathcal{L}$. First, the partition provides a convenient modelling for the study of theoretical properties of Fourier analysis and allows for new results in graph signal analysis (\emph{e.g.} noise level estimation,...
2019
The focus of Part I of this monograph has been on both the fundamental properties, graph topologies, and spectral representations of graphs. Part II embarks on these concepts to address the algorithmic and practical issues centered round data/signal processing on graphs, that is, the focus is on the analysis and estimation of both deterministic and random data on graphs. The fundamental ideas related to graph signals are introduced through a simple and intuitive, yet illustrative and general enough case study of multisensor temperature field estimation. The concept of systems on graph is defined using graph signal shift operators, which generalize the corresponding principles from traditional learning systems. At the core of the spectral domain representation of graph signals and systems is the Graph Discrete Fourier Transform (GDFT). The spectral domain representations are then used as the basis to introduce graph signal filtering concepts and address their design, including Chebys...
Graph signal processing(GSP) is a representation of data in graphical format with directed or undirected vertices. In many applications such as big data networks, economic and social networks analysis signals with graph is relevant. Harmonic analysis for processing the signals with spectral and algebric graphical thereotical concepts are merged and analyzed with respect to signal processing schemes on graphs. In this work, main challenges of GSP are discussed with Graph Spectral Domains (GSD) and when processing the signals on graph. The information is extracted efficiently from the highdimensional data by using operators of signals on graph and transformation of graph on signal are highlighted in this work. Finally, a brief discussion of open issues of GSP are reviewed.
Mathematics, 2021
The paper presents an analysis and overview of vertex–frequency analysis, an emerging area in graph signal processing. A strong formal link of this area to classical time–frequency analysis is provided. Vertex–frequency localization-based approaches to analyzing signals on the graph emerged as a response to challenges of analysis of big data on irregular domains. Graph signals are either localized in the vertex domain before the spectral analysis is performed or are localized in the spectral domain prior to the inverse graph Fourier transform is applied. The latter approach is the spectral form of the vertex–frequency analysis, and it will be considered in this paper since the spectral domain for signal localization is well ordered and thus simpler for application to the graph signals. The localized graph Fourier transform is defined based on its counterpart, the short-time Fourier transform, in classical signal analysis. We consider various spectral window forms based on which thes...
IEEE Signal Processing Magazine, 2017
ArXiv, 2022
Graph filtering is the cornerstone operation in graph signal processing (GSP). Thus, understanding it is key in developing potent GSP methods. Graph filters are local and distributed linear operations, whose output depends only on the local neighborhood of each node. Moreover, a graph filter’s output can be computed separately at each node by carrying out repeated exchanges with immediate neighbors. Graph filters can be compactly written as polynomials of a graph shift operator (typically, a sparse matrix description of the graph). This has led to relating the properties of the filters with the spectral properties of the corresponding matrix – which encodes global structure of the graph. In this work, we propose a framework that relies solely on the local distribution of the neighborhoods of a graph. The crux of this approach is to describe graphs and graph signals in terms of a measurable space of rooted balls. Leveraging this, we are able to seamlessly compare graphs of different ...
arXiv (Cornell University), 2019
The area of Data Analytics on graphs promises a paradigm shift as we approach information processing of classes of data, which are typically acquired on irregular but structured domains (social networks, various ad-hoc sensor networks). Yet, despite its long history, current approaches mostly focus on the optimization of graphs themselves, rather than on directly inferring learning strategies, such as detection, estimation, statistical and probabilistic inference, clustering and separation from signals and data acquired on graphs. To fill this void, we first revisit graph topologies from a Data Analytics point of view, and establish a taxonomy of graph networks through a linear algebraic formalism of graph topology (vertices, connections, directivity). This serves as a basis for spectral analysis of graphs, whereby the eigenvalues and eigenvectors of graph Laplacian and adjacency matrices are shown to convey physical meaning related to both graph topology and higher-order graph properties, such as cuts, walks, paths, and neighborhoods. Through a number of carefully chosen examples, we demonstrate that the isomorphic nature of graphs enables the basic properties and descriptors to be preserved throughout the data analytics process, even in the case of reordering of graph vertices, where classical approaches fail. Next, to illustrate estimation strategies performed on graph signals, spectral analysis of graphs is introduced through eigenanalysis of mathematical descriptors of graphs and in a generic way. Finally, a framework for vertex clustering and graph segmentation is established based on graph spectral representation (eigenanalysis) which illustrates the power of graphs in various data association tasks. The supporting examples demonstrate the promise of Graph Data Analytics in modeling structural and functional/semantic inferences. At the same time, Part I serves as a basis for Part II and Part III which deal with theory, methods and applications of processing Data on Graphs and Graph Topology Learning from data. Contents 1 Introduction 2 2 Graph Definitions and Properties 3 2.1 Basic Definitions. .. .. .. .. .. .. .. 3 2.2 Some Frequently Used Graph Topologies. . 5 2.3 Properties of Graphs and Associated Matrices 7 3 Spectral Decomposition of Graph Matrices 10 3.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Journal Paper, 2022
Comptes Rendus Physique
IEEE Signal Processing Magazine
International Journal of Mathematics Trends and Technology, 2020
IEEE Transactions on Signal Processing, 2019
Anais de XXXVII Simpósio Brasileiro de Telecomunicações e Processamento de Sinais, 2019
Foundations and Trends® in Machine Learning, 2020
arXiv (Cornell University), 2022
Mathematical Problems in Engineering, 2019
Research Square (Research Square), 2022
ArXiv, 2020
2021 IEEE Statistical Signal Processing Workshop (SSP)
IEEE Transactions on Signal Processing
2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016
2015 49th Asilomar Conference on Signals, Systems and Computers, 2015
IEEE Transactions on Signal and Information Processing over Networks, 2016
Cooperative and Graph Signal Processing, 2018
IEEE Transactions on Signal Processing, 2017