Academia.eduAcademia.edu

Complex oscillation of differential polynomials in the unit disc

2013, Periodica Mathematica Hungarica

Abstract

We consider the complex differential equations f +A 1 (z)f +A 0 (z)f = F and where A 0 ≡ 0, A 1 and F are analytic functions in the unit disc Δ = {z : |z| < 1}. We obtain results on the order and the exponent of convergence of zero-points in Δ of the differential polynomials g f = d 2 f + d 1 f + d 0 f with non-simultaneously vanishing analytic coefficients d 2 , d 1 , d 0. We answer a question posed by J. Tu and C. F. Yi in 2008 for the case of the second order linear differential equations in the unit disc.