2012, Social Science Research Network
We provide a mathematical definition of fragility and antifragility as negative or positive sensitivity to a semi-measure of dispersion and volatility (a variant of negative or positive "vega") and examine the link to nonlinear effects. We integrate model error (and biases) into the fragile or antifragile context. Unlike risk, which is linked to psychological notions such as subjective preferences (hence cannot apply to a coffee cup) we offer a measure that is universal and concerns any object that has a probability distribution (whether such distribution is known or, critically, unknown). We propose a detection of fragility, robustness, and antifragility using a single "fast-and-frugal", model-free, probability free heuristic that also picks up exposure to model error. The heuristic lends itself to immediate implementation, and uncovers hidden risks related to company size, forecasting problems, and bank tail exposures (it explains the forecasting biases). While simple to implement, it outperforms stress testing and other such methods such as Value-at-Risk. What is Fragility? The notions of fragility and antifragility were introduced in Taleb(2011,2012). In short, fragility is related to how a system suffers from the variability of its environment beyond a certain preset threshold (when threshold is K, it is called K-fragility), while antifragility refers to when it benefits from this variability-in a similar way to "vega" of an option or a nonlinear payoff, that is, its sensitivity to volatility or some similar measure of scale of a distribution. Simply, a coffee cup on a table suffers more from large deviations than from the cumulative effect of some shocks-conditional on being unbroken, it has to suffer more from "tail" events than regular ones around the center of the distribution, the "at the money" category. This is the case of elements of nature that have survived: conditional on being in existence, then the class of events around the mean should matter considerably less than tail events, particularly when the probabilities decline faster than the inverse of the harm, which is the case of all used monomodal probability distributions. Further, what has exposure to tail events suffers from uncertainty; typically, when systems-a building, a bridge, a nuclear plant, an airplane, or a bank balance sheet-are made robust to a certain level of variability and stress but may fail or collapse if this level is exceeded, then they are particularly fragile to uncertainty about the distribution of the stressor, hence to model error, as this uncertainty increases the probability of dipping below the robustness level, bringing a higher probability of collapse. In the opposite case, the natural selection of an evolutionary process is particularly antifragile, indeed, a more volatile environment increases the survival rate of robust species and eliminates those whose superiority over other species is highly dependent on environmental parameters.