Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2011, Proceedings in applied mathematics & mechanics
…
4 pages
1 file
Thin-film flows are involved in many coating processes, where it is desirable to achieve thin and homogeneous fluid layers. In the present investigations, we treat droplets, spreading on rotating solid substrates. Micro-scale effects appear, firstly, at the wetting front, where the film height tends to zero. Secondly, micro-scale effects may appear at other locations, where the free liquid/gas-interface approaches the solid substrate, as e.g. at film rupture. For such situations, molecular effects need to be considered, e.g. in form of the disjoining pressure (DJP), to get physically-correct solutions. Otherwise, the spreading can be modeled within the frame of continuum mechanics, augmented by the (empirical) law of Tanner to capture the contact-line dynamics. We present, on the one hand, an overview of several interesting issues, as (i) spreading with and without considering the DJP, (ii) spreading after central rupture, including hysteresis effects, and (iii) non-isothermal spreading, including temperaturedependent surface tension (Marangoni effect) and temperature-dependent density (Rayleigh-Bénard effect). On the other hand, we present results for the instability of the contact line, for which the contact line gets corrugated (under isothermal conditions). This instability goes along with a transition from (rotationally-symmetric) two-dimensional to three-dimensional behavior.
2009
This paper presents an experimental study on thin liquid drops and films under the combined action of centrifugal forces due to rotation and radial Marangoni forces due to a corresponding temperature gradient. We shall examine thinning of a given liquid layer both with and without rotation and also consider the onset of the fingering instability in a completely wetting liquid drop. In many of the experiments described here, we use an interferometric technique which provides key information on height profiles. For thick rotating films in the absence of a temperature gradient, when an initially thick layer of fluid is spun to angular velocities where the classical Newtonian solution is negative, the fluid never dewets for the case of a completely wetting fluid, but leaves a microscopic uniform wet layer in the center. Similar experiments with a radially inward temperature gradient reveal the evolution of a radial height profile given by h(r) = A(t)r α , where A(t) decays logarithmically with time, and α 0.8. In the case where there is no rotation, small centrally placed drops show novel retraction behavior under a sufficiently strong temperature gradient. Using the same interferometric arrangement, we observed the onset of the fingering instability of small drops placed at the center of the rotating substrate in the absence of a temperature gradient. At the onset of the instability, the height profile for small drops is more complex than previously assumed.
1997
The influence of spreading particles on the stability of thin liquid films was investigated. Due to the spreading of a particle, i.e. an oil droplet, over a surface of a thin liquid film the latter becomes thinner and may rupture. The following steps in the whole process were distinguished: 1) transport of the particle to the film surface, 2) dewetting of the particle ensuring physical contact between the particle surface and the film surface, 3) spreading of the particle over the film surface and 4) movement of the film bulk liquid induced by the surface movement due to spreading material. An attempt was made to develop a theory that describes the spreading process quantitatively. It describes the film thinning process as a result of the liquid drag due to the surface motion initiated by the spreading material by using the parameters film thickness, droplet radius, liquid bulk viscosity, liquid bulk density and the surface rheological properties of the oil droplet and the film liqu...
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018
We studied the early time dynamics of viscous drop spreading on a liquid-fluid interface. Unlike spreading on solid substrate, a drop deforms at the base as it spreads on a liquid-fluid interface. Hence the dynamics are seen to deviate from the classical power law of spreading. Experimental observations allowed us to establish a simple empirical expression to predict the temporal growth of the contact radius. Further, inertial oscillations were observed for spreading of less viscous liquid drop that can be described by the inertial capillarity model.
Physical Review E, 2015
The impact of droplets on an inclined falling liquid film is studied experimentally using high-speed imaging. The falling film is created on a flat substrate with controllable thicknesses and flow rates. Droplets with different sizes and speeds are used to study the impact process under various Ohnesorge and Weber numbers, and film Reynolds numbers. A number of phenomena associated with droplet impact are identified and analyzed, such as bouncing, partial coalescence, total coalescence, and splashing. The effects of droplet size, speed, as well the film flow rate are studied culminating in the generation of an impact regime map. The analysis of the lubrication force acted on the droplet via the gas layer shows that a higher flow rate in the liquid film produces a larger lubrication force, slows down the drainage process, and increases the probability of droplet bouncing. Our results demonstrate that the flowing film has a profound effect on the droplet impact process and associated phenomena, which are markedly more complex than those accompanying impact on initially quiescent films.
Physics of Fluids, 2016
The complicated dynamics of the contact line of a moving droplet on a solid substrate often hamper the efficient modeling of microfluidic systems. In particular, the selection of the effective boundary conditions, specifying the contact line motion, is a controversial issue since the microscopic physics that gives rise to this displacement is still unknown. Here, a sharp interface, continuum-level, novel modeling approach, accounting for liquid/solid micro-scale interactions assembled in a disjoining pressure term, is presented. By following a unified conception (the model applies both to the liquid/solid and the liquid/ambient interfaces), the friction forces at the contact line, as well as the dynamic contact angle are derived implicitly as a result of the disjoining pressure and viscous effects interplay in the vicinity of the substrate's intrinsic roughness. Previous hydrodynamic model limitations, of imposing the contact line boundary condition to an unknown number and reconfigurable contact lines, when modeling the spreading dynamics on textured substrates, are now overcome. The validity of our approach is tested against experimental data of a droplet impacting on a horizontal solid surface. The study of the early spreading stage on hierarchically structured and chemically patterned solid substrates reveal an inertial regime where the contact radius grows according to a universal power law, perfectly agreeing with recently published experimental findings.
Langmuir, 2022
Droplet impacts are common in many applications such as coating, spraying, or printing; understanding how droplets spread after impact is thus of utmost importance. Such impacts may occur with different velocities on a variety of substrates. The fluids may also be non-Newtonian and thus possess different rheological properties. How the different properties such as surface roughness and wettability, droplet viscosity and rheology as well as interfacial properties affect the spreading dynamics of the droplets and the eventual drop size after impact are unresolved questions. Most recent work focuses on the maximum spreading diameter after impact and uses scaling laws to predict this. In this paper we show that a proper rescaling of the spreading dynamics with the maximum radius attained by the drop, and the impact velocity leads to a unique single and thus universal curve for the variation of diameter 1 versus time. The validity of this universal functional shape is validated for different liquids with different rheological properties as well as substrates with different wettabilities. This universal function agrees with a recent model that proposes a closed set of differential equations for the spreading dynamics of droplets.
Journal of Colloid and Interface Science, 1999
We report several novel phenomena in contact-line and fingering dynamics of macroscopic spinning drops and gravity-driven films with dimensions larger than the capillary length. It is shown through experimental and theoretical analysis that such macroscopic films can exhibit various interfacial shapes, including multi valued ones, near the contact line due to a balance between the external body forces with capillarity. This rich variety of front shapes couples with the usual capillary, viscous, and intermolecular forces at the contact line to produce a rich and unexpected spectrum of contact-line dynamics. A single finger develops when part of the front becomes multivalued on a partially wetting macroscopic spinning drop in contrast to a different mechanism for microscopic drops of completely wetting fluids. Contrary to general expectation, we observe that, at high viscosity and low frequencies of rotation, the speed of a glycerine finger increases with increasing viscosity. Completely wetting Dow Corning 200 Fluid spreads faster over a dry inclined plane than a prewetted one. The presence of a thin prewetted film suppresses fingering both for gravity-driven flow and for spin coating. We analyze some of these unique phenomena in detail and offer qualitative physical explanations for the others.
We report the first explicit measurement on the profile of a spreading edge of nonvolatile liquid, in support of the theory of Hervet and de Gennes on a one-dimensional thin spreading edge. From the laser light interference patterns, the meniscus shape of the edge was reconstructed and the advancing dynamic contact angle was measured. The meniscus shape and the contact angle are in good agreement with their theory. The meniscus shape obtained at several different capillary numbers can be collapsed into one dimensionless curve, using their scaling laws.
Physical review letters, 2015
When a liquid touches a solid surface, it spreads to minimize the system's energy. The classic thin-film model describes the spreading as an interplay between gravity, capillarity, and viscous forces, but it cannot see an end to this process as it does not account for the nonhydrodynamic liquid-solid interactions. While these interactions are important only close to the contact line, where the liquid, solid, and gas meet, they have macroscopic implications: in the partial-wetting regime, a liquid puddle ultimately stops spreading. We show that by incorporating these intermolecular interactions, the free energy of the system at equilibrium can be cast in a Cahn-Hilliard framework with a height-dependent interfacial tension. Using this free energy, we derive a mesoscopic thin-film model that describes the statics and dynamics of liquid spreading in the partial-wetting regime. The height dependence of the interfacial tension introduces a localized apparent slip in the contact-line ...
Europhysics Letters (EPL), 1994
Dynamics of spreading of viscous non -volatile fluid droplets on surfaces is modelled using a solid -on -solid model, which is studied with Monte Carlo simulations. Tendency for dynamical layering and surface attraction are in part embedded into the effective dynamics of the model. This allows a description of the spreading process with a single parameter, which strongly influences the morphology of the droplets. The results qualitatively reproduce many experimentally observed density profiles for polymeric fluids, including rounded droplet shapes, and dynamical layering.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Physical Review Letters, 2001
Physical Review Fluids, 2020
Physics of Fluids, 2007
Journal of Fluid Mechanics, 1991
Mathematical Problems in Engineering, 2005
Journal of Colloid and Interface Science, 1980
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018
Physical Review Letters, 1988
Science advances, 2016
Journal of Physics: Condensed Matter, 2012
Advances in colloid and interface science, 2014