Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2012, Physics Reports
In this review we present a thoroughly comprehensive survey of recent work on modified theories of gravity and their cosmological consequences. Amongst other things, we cover General Relativity, Scalar-Tensor, Einstein-Aether, and Bimetric theories, as well as TeVeS, f (R), general higher-order theories, Hořava-Lifschitz gravity, Galileons, Ghost Condensates, and models of extra dimensions including Kaluza-Klein, Randall-Sundrum, DGP, and higher co-dimension braneworlds. We also review attempts to construct a Parameterised Post-Friedmannian formalism, that can be used to constrain deviations from General Relativity in cosmology, and that is suitable for comparison with data on the largest scales. These subjects have been intensively studied over the past decade, largely motivated by rapid progress in the field of observational cosmology that now allows, for the first time, precision tests of fundamental physics on the scale of the observable Universe. The purpose of this review is to provide a reference tool for researchers and students in cosmology and gravitational physics, as well as a self-contained, comprehensive and up-to-date introduction to the subject as a whole.
2014
This Thesis is devoted to the study of phenomenologically viable gravitational theories, in order to address the most pressing open issues both at very small and very large energy scales. Lovelock’s theorem singles out General Relativity as the only theory with second-order field equations for the metric tensor. So, two possible ways to circumvent it and modify the gravitational sector are taken into account. The first route consists in giving up diffeomorphism invariance, which generically leads to extra propagating degrees of freedom. In this framework Horava gravity is discussed, presenting two restrictions, called respectively “projectability” and “detailed balance”, which are imposed in order to reduce the number of terms in the full theory. We introduce a new version of the theory assuming detailed balance but not projectability, and we show that such theory is dynamically consistent as both the spin-0 and spin-2 gravitons have a well behaved dynamics at lowenergy. Moreover three-dimensional rotating black hole solutions are found and fully studied in the context of Horava gravity, shedding light on its causal structure. A new concept of black hole horizon, dubbed “universal horizon”, arises besides the usual event horizon one, since in Lorentz-violating gravity theories there can be modes propagating even at infinite speed. The second route which is considered, consists in adding extra fields to the gravitational action while diffeomorphism invariance is preserved. In this respect we consider the less explored option that such fields are auxiliary fields, so they do not satisfy dynamical equations but can be instead algebraically eliminated. A very general parametrization for these theories is constructed, rendering also possible to put on them very tight, theory-independent constraints. Some insight about the cosmological implications of such theories is also given. Finally in the conclusions we discuss about the future challenges that the aforementioned gravity theories have to face.
Extended Theories of Gravity can be considered a new paradigm to cure shortcomings of General Relativity at infrared and ultraviolet scales. They are an approach that, by preserving the undoubtedly positive results of Einstein's Theory, is aimed to address conceptual and experimental problems recently emerged in Astrophysics, Cosmology and High Energy Physics. In particular, the goal is to encompass, in a self-consistent scheme, problems like Inflation, Dark Energy, Dark Matter, Large Scale Structure and, first of all, to give at least an effective description of Quantum Gravity. We review the basic principles that any gravitational theory has to follow. The geometrical interpretation is discussed in a broad perspective in order to highlight the basic assumptions of General Relativity and its possible extensions in the general framework of gauge theories. Principles of such modifications are presented, focusing on specific classes of theories like f (R)-gravity and scalar-tensor gravity in the metric and Palatini approaches. The special role of torsion is also discussed. The conceptual features of these theories are fully explored and attention is payed to the issues of dynamical and conformal equivalence between them considering also the initial value problem. A number of viability criteria are presented considering the post-Newtonian and the post-Minkowskian limits. In particular, we discuss the problems of neutrino oscillations and gravitational waves in Extended Gravity. Finally, future perspectives of Extended Gravity are considered with possibility to go beyond a trial and error approach.
2021
General Relativity and the ΛCDM framework are currently the standard lore and constitute the concordance paradigm. Nevertheless, long-standing open theoretical issues, as well as possible new observational ones arising from the explosive development of cosmology the last two decades, offer the motivation and lead a large amount of research to be devoted in constructing various extensions and modifications. All extended theories and scenarios are first examined under the light of theoretical consistency, and then are applied to various geometrical backgrounds, such as the cosmological and the spherical symmetric ones. Their predictions at both the background and perturbation levels, and concerning cosmology at early, intermediate and late times, are then confronted with the huge amount of observational data that astrophysics and cosmology are able to offer recently. Theories, scenarios and models that successfully and efficiently pass the above steps are classified as viable and are ...
Astroparticle Physics, 2008
The cosmological background of gravitational waves can be tuned by the higher-order corrections to the gravitational Lagrangian. In particular, it can be shown that assuming R 1+ǫ , where ǫ indicates a generic (eventually small) correction to the Hilbert-Einstein action in the Ricci scalar R, gives a parametric approach to control the evolution and the production mechanism of gravitational waves in the early Universe.
Proceedings of 11th International Workshop Dark Side of the Universe 2015 — PoS(DSU2015)
Physics Letters B, 2013
We study the background cosmology of two extensions of dRGT massive gravity. The first is variable mass massive gravity, where the fixed graviton mass of dRGT is replaced by the expectation value of a scalar field. We ask whether self-inflation can be driven by the self-accelerated branch of this theory, and we find that, while such solutions can exist for a short period, they cannot be sustained for a cosmologically useful time. Furthermore, we demonstrate that there generally exist future curvature singularities of the "big brake" form in cosmological solutions to these theories. The second extension is the covariant coupling of galileons to massive gravity. We find that, as in pure dRGT gravity, flat FRW solutions do not exist. Open FRW solutions do exist -they consist of a branch of self-accelerating solutions that are identical to those of dRGT, and a new second branch of solutions which do not appear in dRGT.
Classical and Quantum Gravity
Two different ways of generalizing Einstein's general theory of relativity with a cosmological constant to Brans-Dicke type scalar-tensor theories are investigated in the linearized field approximation. In the first case a cosmological constant term is coupled to a scalar field linearly whereas in the second case an arbitrary potential plays the role of a variable cosmological term. We see that the former configuration leads to a massless scalar field whereas the latter leads to a massive scalar field. General solutions of these linearized field equations for both cases are obtained corresponding to a static point mass. Geodesics of these solutions are also presented and solar system effects such as the advance of the perihelion, deflection of light rays and gravitational redshift were discussed. In general relativity cosmological constant has no role on these phenomena. We see that for the Brans-Dicke theory the cosmological constant has also no effect on these phenomena. This is because solar system observations require very large values of the Brans-Dicke parameter and the correction terms to these phenomena becomes identical to GR for these large values of this parameter. This result is also observed for the theory with arbitrary potential if the mass of the scalar field is very light. For a very heavy scalar field, however, there is no such limit on the value of this parameter and there are ranges of this parameter where these contributions may become relevant in these scales. Galactic and intergalactic dynamics is also discussed for these theories at the latter part of the paper with similar conclusions.
Journal of Cosmology and Astroparticle Physics, 2012
The observed accelerated cosmic expansion can be a signature of fourth-order gravity theories, where the acceleration of the Universe is a consequence of departures from Einstein General Relativity, rather than the sign of the existence of a fluid with negative pressure. In the fourth-order gravity theories, the gravity Lagrangian is described by an analytic function f (R) of the scalar curvature R subject to the demanding conditions that no detectable deviations from standard GR is observed on the Solar System scale. Here we consider two classes of f (R) theories able to pass Solar System tests and investigate their viability on cosmological scales. To this end, we fit the theories to a large dataset including the combined Hubble diagram of Type Ia Supernovae and Gamma Ray Bursts, the Hubble parameter H(z) data from passively evolving red galaxies, Baryon Acoustic Oscillations extracted from the seventh data release of the Sloan Digital Sky Survey (SDSS) and the distance priors from the Wilkinson Microwave Anisotropy Probe seven years (WMAP7) data. We find that both classes of f (R) fit very well this large dataset with the present-day values of the matter density, Hubble constant and deceleration parameter in agreement with previous estimates; however, the strong degeneracy among the f (R) parameters prevents us from strongly constraining their values. We also derive the growth factor g = d ln δ/d ln a, with δ = δρ M /ρ M the matter density perturbation, and show that it can still be well approximated by g(z) ∝ Ω M (z) γ. We finally constrain γ (on some representative scales) and investigate its redshift dependence to see whether future data can discriminate between these classes of f (R) theories and standard dark energy models.
The European Physical Journal C
The field equations of modified gravity theories, when considering a homogeneous and isotropic cosmological model, always become autonomous differential equations. This relies on the fact that in such models all variables only depend on cosmological time, or another suitably chosen time parameter. Consequently, the field equations can always be cast into the form of a dynamical system, a successful approach to study such models. We propose a perspective that is applicable to many different modified gravity models and relies on the standard cosmological density parameters only, making our choice of variables model independent. The drawback of our approach is a more complicated constraint equation. We demonstrate our procedure studying various modified gravity models and show how much generic information can be extracted before a specific model is considered.
General Relativity and …, 2005
Alternative theories of gravity have been recently studied in connection with their cosmological applications, both in the Palatini and in the metric formalism. The aim of this paper is to propose a theoretical framework (in the Palatini formalism) to test these theories at the solar system level and possibly at the galactic scales. We exactly solve field equations in vacuum and find the corresponding corrections to the standard general relativistic gravitational field. On the other hand, approximate solutions are found in matter cases starting from a Lagrangian which depends on a phenomenological parameter. Both in the vacuum case and in the matter case the deviations from General Relativity are controlled by parameters that provide the Post-Newtonian corrections which prove to be in good agreement with solar system experiments. * Electronic address: [email protected] † Electronic address: [email protected] ‡ Electronic address: [email protected] § Electronic address: [email protected]
Contemporary Physics - Proceedings of the International Symposium, 2008
One could call 2006 as the year of cosmology since in the year two US scientists were awarded by the Nobel prize for their studies of Cosmic Microwave Background (CMB) spectrum and anisotropy. Studies of CMB anisotropy done with the Soviet spacecraft Prognoz-9 by the Relikt-1 team are reminded. Problems of modern cosmology are outlined. We discuss conformal cosmology parameters from supernovae data in brief. Two approaches to solve the basic problems of cosmology, such as dark matter and dark energy, are discussed, the first (standard) possibility is to introduce new particles, fields etc, the second possibility is to try to change a gravity law to fit observational data. We discuss advantages and disadvantages of the second choice.
Extended Theories of Gravity can be related to several quantum gravity approaches and unifica- tion schemes. They have recently attracted a lot of interest as alternative candidates to explain the observed cosmic acceleration, the flatness of the rotati on curves of spiral galaxies, the grav- itational potential of galaxy clusters, and other relevant astrophysical phenomena. Very likely, what we call "Dark Matter" and "Dark Energy" are nothing else but signals of the breakdown of General Relativity at large scales. Furthermore, PPN-parameters deduced from Solar System experiments do not exclude, a priori, the possibility that s uch theories could give small observ- able effects also at these scales. We review these results gi ving the basic ingredients of such an approach.
Physical Review D, 2005
We consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. We investigate the far future evolution of the Universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models.
Physical review, 2017
Among many alternative gravitational theories to General Relativity (GR), f (R, T) gravity (where R is the Ricci scalar and T the trace of the energy-momentum tensor) has been widely studied recently. By adding a matter contribution to the gravitational Lagrangian, f (R, T) theories have become an interesting extension to GR displaying a broad phenomenology in astrophysics and cosmology. In this paper, we discuss however the difficulties appearing in explaining a viable and realistic cosmology within the f (R, T) class of theories. Our results challenge the viability of f (R, T) as an alternative modification of gravity.
to appear on International Journal of Geometric Methods in Modern Physics
Several issues coming from Cosmology, Astrophysics and Quantum Field Theory suggest to extend the General Relativity in order to overcome several shortcomings emerging at conceptual and experimental level. From one hand, standard Einstein theory fails as soon as one wants to achieve a full quantum description of space-time. In fact, the lack of a final self-consistent Quantum Gravity Theory can be considered one of the starting points for alternative theories of gravity. Specifically, the approach based on corrections and enlargements of the Einstein scheme, have become a sort of paradigm in the study of gravitational interaction. On the other hand, such theories have acquired great interest in cosmology since they "naturally" exhibit inflationary behaviours which can overcome the shortcomings of standard cosmology. From an astrophysical point of view, Extended Theories of Gravity do not require to find candidates for dark energy and dark matter at fundamental level; the approach starts from taking into account only the "observed" ingredients (i.e., gravity, radiation and baryonic matter); it is in full agreement with the early spirit of General Relativity but one has to relax the strong hypothesis that gravity acts at same way at all scales. Several scalar-tensor and f(R)-models agree with observed cosmology, extragalactic and galactic observations and Solar System tests, and give rise to new effects capable of explaining the observed acceleration of cosmic fluid and the missing matter effect of self-gravitating structures. Despite these preliminary results, no final model addressing all the open issues is available at the moment, however the paradigm seems promising in order to achieve a complete and self-consistent theory working coherently at all interaction scales.
Arxiv preprint arXiv:0903.4775, 2009
We consider perturbative modifications of the Friedmann equations in terms of energy density corresponding to modified theories of gravity proposed as an alternative route to comply with the observed accelerated expansion of the universe. Assuming that the present matter content of the universe is a pressureless fluid, the possible singularities that may arise as the final state of the universe are surveyed. It is shown that, at most, two coefficients of the perturbative expansion of the Friedman equations are relevant for the analysis. Some examples of application of the perturbative scheme are included.
Physical Review D, 2016
Modified gravity has attracted much attention over the last few years and remains a potential candidate for dark energy. In particular, the so-called viable f (R) gravity theories, which are able to both recover General Relativity (GR) and produce late-time cosmic acceleration, have been widely studied in recent literature. Nevertheless, extended theories of gravity suffer from several shortcomings which compromise their ability to provide realistic alternatives to the standard cosmological ΛCDM Concordance model. We address the existence of cosmological singularities and the conditions that guarantee late-time acceleration, assuming reasonable energy conditions for standard matter in the so-called Hu-Sawicki f (R) model, currently among the most widely studied modifications to General Relativity. Then using the Supernovae Ia Union 2.1 catalogue, we further constrain the free parameters of this model. The combined analysis of both theoretical and observational constraints sheds some light on the viable parameter space of these models and the form of the underlying effective theory of gravity.
Symmetry, Integrability and Geometry: Methods and Applications, 2016
We shall discuss cosmological models in extended theories of gravitation. We shall define a surface, called the model surface, in the space of observable parameters which characterises families of theories. We also show how this surface can be used to compare with observations. The model surface can potentially be used to falsify whole families of models instead reasoning on a single model basis as it is usually done by best fit arguments with observations.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.