Academia.eduAcademia.edu

Malleable applications for scalable high performance computing

2007, Cluster Computing

Abstract

Iterative applications are known to run as slow as their slowest computational component. This paper introduces malleability, a new dynamic reconfiguration strategy to overcome this limitation. Malleability is the ability to dynamically change the data size and number of computational entities in an application. Malleability can be used by middleware to autonomously reconfigure an application in response to dynamic changes in resource availability in an architecture-aware manner, allowing applications to optimize the use of multiple processors and diverse memory hierarchies in heterogeneous environments. The modular Internet Operating System (IOS) was extended to reconfigure applications autonomously using malleability. Two different iterative applications were made malleable. The first is used in astronomical modeling, and representative of maximum-likelihood applications was made malleable in the SALSA programming language. The second models the diffusion of heat over a two dimensional object, and is representative of applications such as partial differential equations and some types of distributed simulations. Versions of the heat application were made malleable both in SALSA and MPI. Algorithms for concurrent data redistribution are given for each type of application. Results show that using malleability for reconfiguration is 10 to 100 times faster on the tested environments. The algorithms are