Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2021, Monthly Notices of the Royal Astronomical Society
The Jovian Trojans are two swarms of small objects that share Jupiter's orbit, clustered around the leading and trailing Lagrange points, L 4 and L 5. In this work, we investigate the Jovian Trojan population using the technique of astrocladistics, an adaptation of the 'tree of life' approach used in biology. We combine colour data from WISE, SDSS, Gaia DR2, and MOVIS surveys with knowledge of the physical and orbital characteristics of the Trojans, to generate a classification tree composed of clans with distinctive characteristics. We identify 48 clans, indicating groups of objects that possibly share a common origin. Amongst these are several that contain members of the known collisional families, though our work identifies subtleties in that classification that bear future investigation. Our clans are often broken into subclans, and most can be grouped into 10 superclans, reflecting the hierarchical nature of the population. Outcomes from this project include the identification of several high priority objects for additional observations and as well as providing context for the objects to be visited by the forthcoming Lucy mission. Our results demonstrate the ability of astrocladistics to classify multiple large and heterogeneous composite survey data sets into groupings useful for studies of the origins and evolution of our Solar system.
Astronomy & Astrophysics, 2008
Aims. We present a comparative analysis of the spectral slope and color distributions of Jupiter Trojans, with particular attention to asteroid families. We use a sample of data from the Moving Object Catalogue of the Sloan Digital Sky Survey, together with spectra obtained from several surveys. Methods. A first sample of 349 observations, corresponding to 250 Trojan asteroids, were extracted from the Sloan Digital Sky Survey, and we also extracted from the literature a second sample of 91 spectra, corresponding to 71 Trojans. The spectral slopes were computed by means of a least-squares fit to a straight line of the fluxes obtained from the Sloan observations in the first sample, and of the rebinned spectra in the second sample. In both cases the reflectance fluxes/spectra were renormalized to 1 at 6230 Å. Results. We found that the distribution of spectral slopes among Trojan asteroids shows a bimodality. About 2/3 of the objects have reddish slopes compatible with D-type asteroids, while the remaining bodies show less reddish colors compatible with the P-type and C-type classifications. The members of asteroid families also show a bimodal distribution with a very slight predominance of D-type asteroids, but the background is clearly dominated by the D-types. The L4 and L5 swarms show different distributions of spectral slopes, and bimodality is only observed in L4. These differences can be attributed to the asteroid families since the backgraound asteroids show the same slope distribtuions in both swarms. The analysis of individual families indicates that the families in L5 are taxonomically homogeneous, but in L4 they show a mixture of taxonomic types. We discuss a few scenarios that might help to interpret these results.
Monthly Notices of the Royal Astronomical Society, 2020
The Jovian Trojans are two swarms of objects located around the L 4 and L 5 Lagrange points. The population is thought to have been captured by Jupiter during the Solar system's youth. Within the swarms, six collisional families have been identified in previous work, with four in the L 4 swarm, and two in the L 5. Our aim is to investigate the stability of the two Trojan swarms, with a particular focus on these collisional families. We find that the members of Trojan swarms escape the population at a linear rate, with the primordial L 4 (23.35% escape) and L 5 (24.89% escape) population sizes likely 1.31 and 1.35 times larger than today. Given that the escape rates were approximately equal between the two Trojan swarms, our results do not explain the observed asymmetry between the two groups, suggesting that the numerical differences are primordial in nature, supporting previous studies. Upon leaving the Trojan population, the escaped objects move onto orbits that resemble those of the Centaur and short-period comet populations. Within the Trojan collisional families, the 1996 RJ and 2001 UV 209 families are found to be dynamically stable over the lifetime of the Solar system, whilst the Hektor, Arkesilos and Ennomos families exhibit various degrees of instability. The larger Eurybates family shows 18.81% of simulated members escaping the Trojan population. Unlike the L4 swarm, the escape rate from the Eurybates family is found to increase as a function of time, allowing an age estimation of approximately 1.045 ± 0.364 × 10 9 years.
Because of their greater distance from the Sun, the Jovian Trojans have been less studied than main belt asteroids. Although they are numerous (nearly 6000 have well determined orbits as of July 2013), the Trojans remain mysterious in many ways. Their spectra are unlike those of any meteorites in terrestrial collections. The spectra and the low albedos of Trojans, however, bear a strong resemblance to those of cometary nuclei (Abell et al. 2005; Fornasier et al. 2007; Emery et al. 2011). The Nice Model (Morbidelli et al. 2005; 2009) predicts that the Trojans may well be objects that originated with today's Kuiper Belt Objects. The rotation of asteroids larger than ~50 km in diameter seems to be determined largely by collisions, while that of smaller bodies is shaped primarily by YORP forces and torques (Pravec et al. 2008). We are surveying the rotation properties of Trojans to see whether similar trends are present. We find an abundance of slow rotators, including the first doc...
The Astronomical Journal
We present an analysis of survey observations of the trailing L5 Jupiter Trojan swarm using the wide-field Hyper Suprime-Cam CCD camera on the 8.2 m Subaru Telescope. We detected 189 L5 Trojans from our survey that covered about 15 deg2 of sky with a detection limit of m r = 24.1 mag, and selected an unbiased sample consisting of 87 objects with absolute magnitude 14 ≲ H r ≤ 17 corresponding to diameter 2 km ≲ D ≲ 10 km for analysis of size distribution. We fit their differential magnitude distribution to a single-slope power law with an index α = 0.37 ± 0.01, which corresponds to a cumulative size distribution with an index of b = 1.85 ± 0.05. Combining our results with data for known asteroids, we obtained the size distribution of L5 Jupiter Trojans over the entire size range for 9 ≲ H V ≤ 17, and found that the size distributions of the L4 and L5 swarms agree well with each other for a wide range of sizes. This is consistent with the scenario that asteroids in the two swarms orig...
The Astrophysical Journal, 2010
… , 2009 Files in this …, 2009
Science (New York, N.Y.), 2007
The dusty jovian ring system must be replenished continuously from embedded source bodies. The New Horizons spacecraft has performed a comprehensive search for kilometer-sized moons within the system, which might have revealed the larger members of this population. No new moons were found, however, indicating a sharp cutoff in the population of jovian bodies smaller than 8-kilometer-radius Adrastea. However, the search revealed two families of clumps in the main ring: one close pair and one cluster of three to five. All orbit within a brighter ringlet just interior to Adrastea. Their properties are very different from those of the few other clumpy rings known; the origin and nonrandom distribution of these features remain unexplained, but resonant confinement by Metis may play a role.
Monthly Notices of the Royal Astronomical Society, 2017
Using 17 chemical elements as a proxy for stellar DNA, we present a full phylogenetic study of stars in the solar neighbourhood. This entails applying a clustering technique that is widely used in molecular biology to construct an evolutionary tree from which three branches emerge. These are interpreted as stellar populations that separate in age and kinematics and can be thus attributed to the thin disc, the thick disc and an intermediate population of probable distinct origin. We further find six lone stars of intermediate age that could not be assigned to any population with enough statistical significance. Combining the ages of the stars with their position on the tree, we are able to quantify the mean rate of chemical enrichment of each of the populations, and thus show in a purely empirical way that the star formation rate in the thick disc is much higher than that in the thin disc. We are also able to estimate the relative contribution of dynamical processes such as radial migration and disc heating to the distribution of chemical elements in the solar neighbourhood. Our method offers an alternative approach to chemical tagging methods with the advantage of visualizing the behaviour of chemical elements in evolutionary trees. This offers a new way to search for 'common ancestors' that can reveal the origin of solar neighbourhood stars.
Eprint Arxiv 0704 3059, 2007
The astrometric signature imposed by a planet on its primary increases substantially towards longer periods (proportinal to P^2/3), so that long-period planets can be more easily detected, in principle. For example, a one Solar-mass (M_Sun) star would be pulled by roughly 1 mas by a one Jupiter-mass (M_J) planet with a period of one-hundred years at a distance of 20 pc. Such position accuracies can now be obtained with both ground-based and space-based telescopes. The difficulty was that it often takes many decades before a detectable position shift will occur. However, by the time the next generation of astrometric missions such as SIM will be taking data, several decades will have past since the first astrometric mission, HIPPARCOS. Here we propose to use a new astrometric method that employs a future, highly accurate SIM Quick-Look survey and HIPPARCOS data taken twenty years prior. Using position errors for SIM of 4 muas, this method enables the detection and characterization of Solar-system analogs (SOSAs) with periods up to 240 (500) years for 1 (10) M_J companions. Because many tens of thousands nearby stars can be surveyed this way for a modest expenditure of SIM time and SOSAs may be quite abundant, we expect to find many hundreds of extra-solar planets with long-period orbits. Such a data set would nicely complement the short-period systems found by the radial-velocity method. Brown dwarfs and low-mass stellar companions can be found and characterized if their periods are shorter than about 500 years. This data set will provide invaluable constraints on models of planet formation, as well as a database for systems where the location of the giant planets allow for the formation of low-mass planets in the habitable zone. [Abridged]
We conduct a statistical analysis of a combined sample of direct imaging data, totalling nearly 250 stars observed by HiCIAO on the Subaru Telescope, NIRI on Gemini North, and NICI on Gemini South. The stars cover a wide range of ages and spectral types, and include five detections (kap And b, two ~60 M_J brown dwarf companions in the Pleiades, PZ Tel B, and CD-35 2722 B). We conduct a uniform, Bayesian analysis of the ages of our entire sample, using both membership in a kinematic moving group and activity/rotation age indicators, to obtain posterior age distributions. We then present a new statistical method for computing the likelihood of a substellar distribution function. By performing most integrals analytically, we achieve an enormous speedup over brute-force Monte Carlo. We use this method to place upper limits on the maximum semimajor axis beyond which the distribution function for radial-velocity planets cannot extend, finding model-dependent values of ~30--100 AU. Finally...
Symposium - International Astronomical Union, 1992
The orbital evolution of the whole sample sample of short-period comets was computed by numerical integrations for a time interval of 2000 yr centered on the present epoch. This data base is intended to serve in various studies involving the statistics of orbital evolution and correlation with physical parameters or discovery circumstances. We present some results concerning the following aspects: the evolution of the orbital elements and their past-future asymmetry, statistics on the discovery of comets and on the encounters of comets with Jupiter.
The Planetary Science Journal
The Jupiter Trojans are a large group of asteroids that are coorbiting with Jupiter near its L4 and L5 Lagrange points. The study of Jupiter Trojans is crucial for testing different models of planet formation that are directly related to our understanding of solar system evolution. In this work, we select known Jupiter Trojans listed by the Minor Planet Center from the full six years data set (Y6) of the Dark Energy Survey (DES) to analyze their photometric properties. The DES data allow us to study Jupiter Trojans with a fainter magnitude limit than previous studies in a homogeneous survey with griz band measurements. We extract a final catalog of 573 unique Jupiter Trojans. Our sample include 547 asteroids belonging to L5. This is one of the largest analyzed samples for this group. By comparing with the data reported by other surveys we found that the color distribution of L5 Trojans is similar to that of L4 Trojans. We find that L5 Trojans’ g − i and g − r colors become less red ...
The Astrophysical Journal, 2018
Jupiter and Saturn each have complex systems of satellites and rings. These satellites can be classified into dynamical groups, implying similar formation scenarios. Recently, a larger number of additional irregular satellites have been discovered around both gas giants that have yet to be classified. The aim of this paper is to examine the relationships between the satellites and rings of the gas giants, using an analytical technique called cladistics. Cladistics is traditionally used to examine relationships between living organisms, the 'tree of life'. In this work, we perform the first cladistical study of objects in a planetary science context. Our method uses the orbital, physical and compositional characteristics of satellites to classify the objects in the Jovian and Saturnian systems. We find that the major relationships between the satellites in the two systems, such as families, as presented in previous studies, are broadly preserved. In addition, based on our analysis of the Jovian system, we identify a new retrograde irregular family, the Iocaste family, and suggest that the Phoebe family of the Saturnian system can be further divided into two subfamilies. We also propose that the Saturnian irregular families be renamed, to be consistent with the convention used in Jovian families. Using cladistics, we are also able to assign the new unclassified irregular satellites into families. Taken together, the results of this
Icarus, 2000
New narrowband spectrophotometric data of JVI Himalia support its C-type classification. Two spectra taken on successive nights are rotationally sampled. The new spectra confirm the presence of a weak absorption feature centered near 0.7 µm attributed to oxidized iron in phyllosilicates, products of aqueous alteration. Evaluation of the UBV photometry of JVI Himalia and JVII Elara compared to the UBV photometry of C-class (and subclass) asteroids showing spectral evidence of the 0.7-µm absorption feature, and the new spectra compared with ECAS photometry of B-, F-, and some Cclass asteroids, suggests that JVI Himalia is an F-class asteroid, a subclass of the Cs. We propose that the parent body of the prograde outer jovian satellites originated as part of the dynamical Nysa asteroid family. Evolutionary models of the Jovian system are used to address the capture and dispersal of the irregular satellites.
The Astrophysical Journal, 2011
The Astronomical Journal
We report near-infrared (0.7-2.5 µm) reflectance spectra for each of the six target asteroids of the forthcoming NASA Discovery-class mission, Lucy. Five Jupiter Trojans (the binary (617) Patroclus system, (3548) Eurybates, (21900) Orus, (11351) Leucus, and (15094) Polymele) are well-characterized, with measurable spectral differences. We also report a survey-quality spectrum for main belt asteroid (52246) Donaldjohanson. We measured a continuum of spectral slopes including "red" (Orus, Leucus), "less red" (Eurybates, Patroclus-Menoetius) and intermediate (Polymele), indicating a range of compositional end-members or geological histories. We perform radiative transfer modeling of several possible surface compositions. We find that the mild-sloped spectra and low albedo of Patroclus and Eurybates imply similar compositions. Eurybates (~7 wt.% water ice) and Patroclus (~4 wt.% water ice) are consistent with a hydrated surface. Models for Orus and Leucus are consistent with each other and require a significantly more reddening agent (e.g. iron-rich silicates or tholin-like organics). Polymele has a linear spectrum like Patroclus, but a higher albedo more closely aligned with Orus/Leucus, defying simple grouping. Solar system formation models generally predict that the Jovian Trojans accreted in the outer solar system. Our observations and analysis are generally consistent with this expectation, although not uniquely so.
The Astrophysical Journal, 2013
The rapid growth in the number of known exoplanets has revealed the existence of several distinct planetary populations in the observed mass-period diagram. Two of the most surprising are, (1) the concentration of gas giants around 1AU and (2) the accumulation of a large number of low-mass planets with tight orbits, also known as super-Earths and hot Neptunes. We have recently shown that protoplanetary disks have multiple planet traps that are characterized by orbital radii in the disks and halt rapid type I planetary migration. By coupling planet traps with the standard core accretion scenario, we showed that one can account for the positions of planets in the mass-period diagram. In this paper, we demonstrate quantitatively that most gas giants formed at planet traps tend to end up around 1 AU with most of these being contributed by dead zones and ice lines. In addition, we show that a large fraction of super-Earths and hot Neptunes are formed as "failed" cores of gas giants-this population being constituted by comparable contributions from dead zone and heat transition traps. Our results are based on the evolution of forming planets in an ensemble of disks where we vary only the lifetimes of disks as well as their mass accretion rates onto the host star. We show that a statistical treatment of the evolution of a large population of planetary cores initially caught in planet traps accounts for the existence of three distinct exoplantary populations-the hot Jupiters, the more massive planets at roughly orbital radii around 1 AU orbital, and the short period SuperEarths and hot Neptunes. There are very few evolutionary tracks that feed into the large orbital radii characteristic of the imaged Jovian planet and this is in accord with the result of recent surveys that find a paucity of Jovian planets beyond 10 AU. Finally, we find that low-mass planets in tight orbits become the dominant planetary population for low mass stars (M * ≤ 0.7M ⊙), in agreement with the previous studies which show that the formation of gas giants is preferred for massive stars.
The Astrophysical Journal, 2014
We conduct a statistical analysis of a combined sample of direct imaging data, totalling nearly 250 stars. The stars cover a wide range of ages and spectral types, and include five detections (κ And b, two ∼60 M J brown dwarf companions in the Pleiades, PZ Tel B, and CD−35 2722B). For some analyses we add a currently unpublished set of SEEDS observations, including the detections GJ 504b and GJ 758B. We conduct a uniform, Bayesian analysis of all stellar ages using both membership in a kinematic moving group and activity/rotation age indicators. We then present a new statistical method for computing the likelihood of a substellar distribution function. By performing most of the integrals analytically, we achieve an enormous speedup over brute-force Monte Carlo. We use this method to place upper limits on the maximum semimajor axis of the distribution function derived from radial-velocity planets, finding model-dependent values of ∼30-100 AU. Finally, we model the entire substellar sample, from massive brown dwarfs to a theoretically motivated cutoff at ∼5 M Jup , with a single power law distribution. We find that p(M, a) ∝ M −0.65±0.60 a −0.85±0.39 (1σ errors) provides an adequate fit to our data, with 1.0-3.1% (68% confidence) of stars hosting 5-70 M Jup companions between 10 and 100 AU. This suggests that many of the directly imaged exoplanets known, including most (if not all) of the low-mass companions in our sample, formed by fragmentation in a cloud or disk, and represent the low-mass tail of the brown dwarfs.
The Astronomical Journal, 2016
The past two decades have seen a significant advancement in the detection, classification, and understanding of exoplanets and binaries. This is due, in large part, to the increase in use of small-aperture telescopes (<20 cm) to survey large areas of the sky to milli-mag precision with rapid cadence. The vast majority of the planetary and binary systems studied to date consists of main-sequence or evolved objects, leading to a dearth of knowledge of properties at early times (<50 Myr). Only a dozen binaries and one candidate transiting Hot Jupiter are known among pre-main-sequence objects, yet these are the systems that can provide the best constraints on stellar formation and planetary migration models. The deficiency in the number of wellcharacterized systems is driven by the inherent and aperiodic variability found in pre-main-sequence objects, which can mask and mimic eclipse signals. Hence, a dramatic increase in the number of young systems with high-quality observations is highly desirable to guide further theoretical developments. We have recently completed a photometric survey of threenearby (<150 pc) and young (<50 Myr) moving groups with a small-aperture telescope. While our survey reached the requisite photometric precision, the temporal coverage was insufficient to detect Hot Jupiters. Nevertheless, we discovered 346 pre-main-sequence binary candidates, including 74 high-priority objects for further study.
The Astrophysical Journal, 2014
Motivated by the order-of-magnitude difference in the frequency of giant planets orbiting M dwarfs inferred by microlensing and radial velocity (RV) surveys, we present a method for comparing the statistical constraints on exoplanet demographics inferred from these methods. We first derive the mapping from the observable parameters of a microlensing-detected planet to those of an analogous planet orbiting an RV-monitored star. Using this mapping, we predict the distribution of RV observables for the planet population inferred from microlensing surveys, taking care to adopt reasonable priors for, and properly marginalize over, the unknown physical parameters of microlensing-detected systems. Finally, we use simple estimates of the detection limits for a fiducial RV survey to predict the number and properties of analogs of the microlensing planet population such an RV survey should detect. We find that RV and microlensing surveys have some overlap, specifically for super-Jupiter mass planets (m p 1 M Jup ) with periods between ∼ 3 − 10 years. However, the steeply falling planetary mass function inferred from microlensing implies that, in this region of overlap, RV surveys should infer a much smaller frequency than the overall giant planet frequency (m p 0.1 M Jup ) inferred by microlensing. Our analysis demonstrates that it is possible to statistically compare and synthesize data sets from multiple exoplanet detection techniques in order to infer exoplanet demographics over wider regions of parameter space than are accessible to individual methods. In a companion paper, we apply our methodology to several representative microlensing and RV surveys to derive the frequency of planets around M dwarfs with orbits of 30 years.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.