Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2005, Journal of Cell Biology
…
10 pages
1 file
af kinases relay signals inducing proliferation, differentiation, and survival. The Raf-1 isoform has been extensively studied as the upstream kinase linking Ras activation to the MEK/ERK module. Recently, however, genetic experiments have shown that Raf-1 plays an essential role in counteracting apoptosis, and that it does so independently of its ability to activate MEK. By conditional gene ablation, we now show that Raf-1 is required for normal wound healing in vivo and for the migration of keratinocytes and fibroblasts in vitro. Raf-1-R deficient cells show a symmetric, contracted appearance, characterized by cortical actin bundles and by a disordered vimentin cytoskeleton. These defects are due to the hyperactivity and incorrect localization of the Rho-effector Rok-␣ to the plasma membrane. Raf-1 physically associates with Rok-␣ in wild-type (WT) cells, and reintroduction of either WT or kinase-dead Raf-1 in knockout fibroblasts rescues their defects in shape and migration. Thus, Raf-1 plays an essential, kinase-independent function as a spatial regulator of Rho downstream signaling during migration.
The Journal of Cell Biology, 2009
Journal of Cell Biology, 2009
The activity of Raf-1 and Rok-α kinases is regulated by intramolecular binding of the regulatory region to the kinase domain. Autoinhibition is relieved upon binding to the small guanosine triphosphatases Ras and Rho. Downstream of Ras, Raf-1 promotes migration and tumorigenesis by antagonizing Rok-α, but the underlying mechanism is unknown. In this study, we show that Rok-α inhibition by Raf-1 relies on an intermolecular interaction between the Rok-α kinase domain and the cysteine-rich Raf-1 regulatory domain (Raf-1reg), which is similar to Rok-α's own autoinhibitory region. Thus, Raf-1 mediates Rok-α inhibition in trans, which is a new concept in kinase regulation. This mechanism is physiologically relevant because Raf-1reg is sufficient to rescue all Rok-α–dependent defects of Raf-1–deficient cells. Downstream of Ras and Rho, the Raf-1–Rok-α interaction represents a novel paradigm of pathway cross talk that contributes to tumorigenesis and cell motility.
Cell Death and Differentiation, 2002
Molecular Biology of the Cell, 2007
The actin cytoskeleton controls multiple cellular functions, including cell morphology, movement, and growth. Accumulating evidence indicates that oncogenic activation of the mitogen-activated protein kinase kinase/extracellular signalregulated kinase 1/2 (MEK/ERK1/2) pathway is accompanied by actin cytoskeletal reorganization. However, the signaling events contributing to actin cytoskeleton remodeling mediated by aberrant ERK1/2 activation are largely unknown. Mutant B-RAF is found in a variety of cancers, including melanoma, and it enhances activation of the MEK/ERK1/2 pathway. We show that targeted knockdown of B-RAF with small interfering RNA or pharmacological inhibition of MEK increased actin stress fiber formation and stabilized focal adhesion dynamics in human melanoma cells. These effects were due to stimulation of the Rho/Rho kinase (ROCK)/LIM kinase-2 signaling pathway, cumulating in the inactivation of the actin depolymerizing/severing protein cofilin. The expression of Rnd3, a Rho antagonist, was attenuated after B-RAF knockdown or MEK inhibition, but it was enhanced in melanocytes expressing active B-RAF. Constitutive expression of Rnd3 suppressed the actin cytoskeletal and focal adhesion effects mediated by B-RAF knockdown.
Journal of Cell Biology, 2005
blation of the Raf-1 protein causes fetal liver apoptosis, embryonic lethality, and selective hypersensitivity to Fas-induced cell death. Furthermore, Raf-1-deficient cells show defective migration as a result of the deregulation of the Rho effector kinase Rok-␣. In this study, we show that the kinase-independent modulation of Rok-␣ signaling is also the basis of the antiapoptotic function of Raf-1. Fas activation stimulates the formation of Raf-1-Rok-␣ complexes, and Rok-␣ signaling is up-regulated in Raf-1-deficient cells. This leads to A increased clustering and membrane expression of Fas, which is rescued both by kinase-dead Raf-1 and by interfering with Rok-␣ or its substrate ezrin. Increased Fas clustering and membrane expression are also evident in the livers of Raf-1-deficient embryos, and genetically reducing Fas expression counteracts fetal liver apoptosis, embryonic lethality, and the apoptotic defects of embryonic fibroblasts. Thus, Raf-1 has an essential function in regulating Fas expression and setting the threshold of Fas sensitivity during embryonic life.
Oncogene, 2012
Ras-driven tumorigenesis is assumed to depend on Raf for ERK activation and proliferation; yet, an in vivo requirement for Raf as MEK/ERK activator in this setting has not been demonstrated to date. Here, we show that epidermis-restricted B-Raf ablation restrains the onset and stops the progression of established Ras-driven tumors by limiting MEK/ERK activation and proliferation. Concomitant elimination of B-Raf and Raf-1 enforces the abrupt regression of established tumors owing to the decrease in ERK activation and proliferation caused by B-Raf ablation combined with the ERK-independent increase in Rho-dependent kinase (Rok) signaling and differentiation triggered by Raf-1 inactivation. Thus, B-Raf and Raf-1 have non-redundant functions in Ras-driven tumorigenesis. Of note, Raf kinase inhibitors achieve impressive results in melanomas harboring oncogenic BRAF, but are ineffective against Ras-driven tumors; moreover, therapy-related skin tumors driven by a paradox ERK activation as well as primary and acquired resistance have been reported. Our results suggest that therapies targeting both Raf kinase-dependent and-independent pathways may be effective against a broader range of malignancies and reduce the risks of adverse effects and/or resistance.
Cellular Signalling, 2013
MAP kinase (MAPK) signaling results from activation of Raf kinases in response to external or internal stimuli. Here, we demonstrate that Raf Kinase Inhibitory Protein (RKIP) regulates the activation of MAPK when B-Raf signaling is defective. We used multiple models including mouse embryonic fibroblasts (MEFs) and primary keratinocytes from RKIP-or Raf-deficient mice as well as allografts in mice to investigate the mechanism. Loss of B-Raf protein or activity significantly reduces MAPK activation in these cells. We show that RKIP depletion can rescue the compromised ERK activation and promote proliferation, and this rescue occurs through a Raf-1 dependent mechanism. These results provide formal evidence that RKIP is a bona fide regulator of Raf-1. We propose a new model in which RKIP plays a key role in regulating the ability of cells to signal through Raf-1 to ERK in B-Raf compromised cells.
Nature, 1999
Raf-1 phosphorylates and activates MEK-1, a kinase that activates the extracellular signal regulated kinases (ERK). This kinase cascade controls the proliferation and differentiation of different cell types. Here we describe a Raf-1-interacting protein, isolated using a yeast two-hybrid screen. This protein inhibits the phosphorylation and activation of MEK by Raf-1 and is designated RKIP (Raf kinase inhibitor protein). In vitro, RKIP binds to Raf-1, MEK and ERK, but not to Ras. RKIP co-immunoprecipitates with Raf-1 and MEK from cell lysates and colocalizes with Raf-1 when examined by confocal microscopy. RKIP is not a substrate for Raf-1 or MEK, but competitively disrupts the interaction between these kinases. RKIP overexpression interferes with the activation of MEK and ERK, induction of AP-1-dependent reporter genes and transformation elicited by an oncogenically activated Raf-1 kinase. Downregulation of endogenous RKIP by expression of antisense RNA or antibody microinjection in...
The Journal of Cell Biology, 2005
Ablation of the Raf-1 protein causes fetal liver apoptosis, embryonic lethality, and selective hypersensitivity to Fas-induced cell death. Furthermore, Raf-1-deficient cells show defective migration as a result of the deregulation of the Rho effector kinase Rok-alpha. In this study, we show that the kinase-independent modulation of Rok-alpha signaling is also the basis of the antiapoptotic function of Raf-1. Fas activation stimulates the formation of Raf-1-Rok-alpha complexes, and Rok-alpha signaling is up-regulated in Raf-1-deficient cells. This leads to increased clustering and membrane expression of Fas, which is rescued both by kinase-dead Raf-1 and by interfering with Rok-alpha or its substrate ezrin. Increased Fas clustering and membrane expression are also evident in the livers of Raf-1-deficient embryos, and genetically reducing Fas expression counteracts fetal liver apoptosis, embryonic lethality, and the apoptotic defects of embryonic fibroblasts. Thus, Raf-1 has an essential function in regulating Fas expression and setting the threshold of Fas sensitivity during embryonic life.
Molecular and Cellular Biology, 2000
Moreover, cells expressing activated RhoA failed to multilayer in response to Raf. Pharmacological inhibition of MEK activation prevented all of the biological and biochemical changes described above. Consequently, the data are consistent with a role for induced Rnd3 expression downstream of the Raf-MEK-extracellular signal-regulated kinase pathway in epithelial oncogenesis.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
FEBS Letters, 2005
Molecular and Cellular Biology, 2003
Journal of Biological …, 1999
The FASEB Journal, 2000
Journal of Biological Chemistry, 1999
Advances in Enzyme Regulation, 2003
Molecular Biology of the Cell, 2005
PLoS ONE, 2009
The EMBO Journal, 2002
Nature Cell Biology, 2005
Molecular Biology of the Cell, 2005
Journal of Cellular Physiology, 2007
Molecular and Cellular Biology, 1997
Current Biology, 2000
Molecular and Cellular Biology, 2000
Journal of Biological Chemistry, 2002
Journal of Biological Chemistry, 1999
Molecular biology of the cell, 2011
Journal of Cellular Biochemistry, 2008
Molecular and cellular biology, 1995