Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2021, Science
Conformer-specific dynamics Conformation-dependent dynamics play an important role in organic chemistry syntheses such as electrocyclic reactions, as well as in biological processes such as protein folding. However, current time-resolved experimental methods struggle to distinguish conformers from each other, and conformational isomerism is usually analyzed through reactant and product distributions. Using a combination of mega–electron volt ultrafast electron diffraction and quantum wave packet simulations, Champenois et al . directly followed the photochemical electrocyclic ring opening of the molecule α-phellandrene with femtosecond time resolution and confirmed that the transformation of a specific molecular conformer follows the famous Woodward-Hoffmann rules. The proposed method is potentially a powerful tool to follow conformer specificity in various organic and biological systems in real time. —YS
2021
Conformational isomers or conformers of molecules play a decisive role in chemistry and biology. However, experimental methods to investigate chemical reaction dynamics are typically not conformersensitive. Here, we report on a gas-phase megaelectronvolt ultrafast electron diffraction investigation of α-phellandrene undergoing an electrocyclic ring-opening reaction. We directly image the evolution of a specific set of α-phellandrene conformers into the product isomer predicted by the Woodward-Hoffmann rules in real space and time. Our experimental results are in quantitative agreement with nonadiabatic quantum molecular dynamics simulations, which provide unprecedented detail of how conformation influences time scale and quantum efficiency of photoinduced ring-opening reactions. Due to the prevalence of large numbers of conformers in organic chemistry, our findings impact our general understanding of reaction dynamics in chemistry and biology. Main Text: Conformational isomers, or c...
Current Pharmaceutical Biotechnology, 2004
This mini-review describes how single-molecule sensitive fluorescence resonance energy transfer (FRET) and photoinduced electron transfer (PET) reactions can be successfully applied to monitor conformational dynamics in biopolymers. Single-pair FRET experiments are ideally suited to study conformational dynamics occurring on the nanometer scale, e.g. during protein folding or unfolding. In contrast, conformational dynamics with functional significance, for example occurring in enzymes at work, often appear on much smaller spatial scales of up to several Angströms. Our results demonstrate that selective PET-reactions between fluorophores and amino acids or DNA nucleotides represent a versatile tool to measure small-scale conformational dynamics in biopolymers on a wide range of time scales, extending from nanoseconds to seconds, at the single-molecule level. That is, the monitoring of conformational dynamics of biopolymers with temporal resolutions comparable to those within reach using new techniques of molecular dynamic simulations. Furthermore, we demonstrate that the strong distance dependence of charge separation reactions on the sub-nanometer scale can be used to develop conformationally flexible PET-biosensors. These sensors enable the detection of specific target molecules in the sub-picomolar range and allow one to follow their molecular binding dynamics with temporal resolution.
Proceedings of the National Academy of Sciences, 2002
Femtosecond time-resolved spectroscopy on model peptides with built-in light switches combined with computer simulation of light-triggered motions offers an attractive integrated approach toward the understanding of peptide conformational dynamics. It was applied to monitor the light-induced relaxation dynamics occurring on subnanosecond time scales in a peptide that was backbone-cyclized with an azobenzene derivative as optical switch and spectroscopic probe. The femtosecond spectra permit the clear distinguishing and characterization of the subpicosecond photoisomerization of the chromophore, the subsequent dissipation of vibrational energy, and the subnanosecond conformational relaxation of the peptide. The photochemical cis͞trans-isomerization of the chromophore and the resulting peptide relaxations have been simulated with molecular dynamics calculations. The calculated reaction kinetics, as monitored by the energy content of the peptide, were found to match the spectroscopic data. Thus we verify that all-atom molecular dynamics simulations can quantitatively describe the subnanosecond conformational dynamics of peptides, strengthening confidence in corresponding predictions for longer time scales.
2007
Femtosecond time-resolved spectroscopy on model peptides with built-in light switches combined with computer simulation of light-triggered motions offers an attractive integrated approach toward the understanding of peptide conformational dynamics. It was applied to monitor the light-induced relaxation dynamics occurring on subnanosecond time scales in a peptide that was backbone-cyclized with an azobenzene derivative as optical switch and spectroscopic probe. The femtosecond spectra permit the clear distinguishing and characterization of the subpicosecond photoisomerization of the chromophore, the subsequent dissipation of vibrational energy, and the subnanosecond conformational relaxation of the peptide. The photochemical cis͞trans-isomerization of the chromophore and the resulting peptide relaxations have been simulated with molecular dynamics calculations. The calculated reaction kinetics, as monitored by the energy content of the peptide, were found to match the spectroscopic data. Thus we verify that all-atom molecular dynamics simulations can quantitatively describe the subnanosecond conformational dynamics of peptides, strengthening confidence in corresponding predictions for longer time scales.
Proceedings of the National Academy of Sciences, 2004
The Journal of Physical Chemistry B, 2012
We report here our systematic characterization of a photoinduced electron-transfer (ET) redox cycle in a covalently linked donor–spacer–acceptor flexible system, consisting of N-acetyl-tryptophan methylester as an electron donor and thymine as an electron acceptor in three distinct solvents of water, acetonitrile, and dioxane. With femtosecond resolution, we determined all the ET time scales, forward and backward, by following the complete reaction evolution from reactants to intermediates and finally to products. Surprisingly, we ...
The journal of physical chemistry. B, 2014
A local perturbation of a protein may lead to functional changes at some distal site. An example is the PDZ2 domain of human tyrosine phosphatase 1E, which shows an allosteric transition upon binding to a peptide ligand. Recently Buchli et al. presented a time-resolved study of this transition by covalently linking an azobenzene photoswitch across the binding groove and using a femtosecond laser pulse that triggers the cis-trans photoisomerization of azobenzene. To aid the interpretation of these experiments, in this work seven microsecond runs of all-atom molecular dynamics simulations each for the wild-type PDZ2 in the ligand-bound and -free state, as well as the photoswitchable protein (PDZ2S) in the cis and trans states of the photoswitch, in explicit water were conducted. First the theoretical model is validated by recalculating the available NMR data from the simulations. By comparing the results for PDZ2 and PDZ2S, it is analyzed to what extent the photoswitch indeed mimics t...
Chemical Physics Letters, 2003
Complex reactions involve the transformation of molecular structures with many atoms. Ultrafast electron diffraction is developed here to directly observe such transient structures. The level of complexity is demonstrated for both the thermal and light-mediated reactions involving the electrocyclic Cope bond rearrangement and ring opening of 1,3,5cyclooctatriene. For the former, we determine the ground-state structures, and for the later we observe the transient structures in their non-equilibrium state. The selective structural determination reported here using pulse sequences would not have been possible without the high sensitivity and spatio-temporal resolution of ultrafast electron diffraction.
We present a research program that uses the unique characteristics of the LCLS to investigate the response and evolution of reactants during the early chemical events that are initiated by photon-induced electronic redistributions. We intend to explore ultrafast events coupled to chemical reactivity in systems ranging in complexity from diatomic molecules in the gas phase to nanocrystalline materials in the condensed phase. A full experimental, theoretical, and instrumentation program will be developed that puts minimum demands on the exact x-ray energy delivered by the beam line by using non-resonant spectroscopic and scattering techniques. A maximum amount of information will be gathered by simultaneously utilizing final-state x-ray fluorescence spectroscopy and wide angle x-ray scattering with the full intensity of the FEL photon output.
Nature, 2008
The role of conformational changes in explaining the huge catalytic power of enzymes is currently one of the most challenging questions in biology 1-7 . Although it is now widely regarded that enzymes modulate reaction rates by means of short-and long-range protein motions 3-7 , it is almost impossible to distinguish between conformational changes and catalysis. We have solved this problem using the chlorophyll biosynthetic enzyme NADPH:protochlorophyllide (Pchlide) oxidoreductase, which catalyses a unique light-driven reaction involving hydride and proton transfers 8 . Here we report that prior excitation of the enzyme-substrate complex with a laser pulse induces a more favourable conformation of the active site, enabling the coupled hydride and proton transfer reactions to occur. This effect, which is triggered during the Pchlide excitedstate lifetime and persists on a long timescale, switches the enzyme into an active state characterized by a high rate and quantum yield of formation of a catalytic intermediate. The corresponding spectral changes in the mid-infrared following the absorption of one photon reveal significant conformational changes in the enzyme, illustrating the importance of flexibility and dynamics in the structure of enzymes for their function.
The journal of physical chemistry. B, 2011
Employing nonequilibrium molecular dynamics (MD) simulations and transient infrared (IR) spectroscopy, a joint theoretical/experimental study on a water-soluble photoswitchable octapeptide designed by Renner et al. [Biopolymers 2002, 63, 382] is presented. The simulations predict the cooling of the hot photoproducts on a time scale of 7 ps and complex conformational rearrangements ranging from a few picoseconds to several nanoseconds. The experiments yield a dominant fast relaxation time of 5 ps, which is identified as the cooling time of the peptide in water and also accounts for initial conformational changes of the system. Moreover, a weaker component of 300 ps is found, which reflects the overall conformational relaxation of the system. The virtues and the limitations of the joint MD/IR approach to describe biomolecular conformational rearrangements are discussed.
The Journal of Physical Chemistry B, 2013
The photoinduced ring-closing reaction in diarylethene, which serves as a model system for understanding reactive crossings through conical intersections, was directly observed with atomic resolution using femtosecond electron diffraction. Complementary ab initio calculations were also performed. Immediately following photoexcitation, subpicosecond structural changes associated with the formation of an open-ring excited-state intermediate were resolved. The key motion is the rotation of the thiophene rings, which significantly decreases the distance between the reactive carbon atoms prior to ring closing. Subsequently, on the few picosecond time scale, localized torsional motions of the carbon atoms lead to the formation of the closed-ring photoproduct. These direct observations of the molecular motions driving an organic chemical reaction were only made possible through the development of an ultrabright electron source to capture the atomic motions within the limited number of sampling frames and the low data acquisition rate dictated by the intrinsically poor thermal conductivity and limited photoreversibility of organic materials.
Biophysical Journal, 2006
Employing nonequilibrium molecular dynamics simulations, a comprehensive computational study of the photoinduced conformational dynamics of a photoswitchable bicyclic azobenzene octapeptide is presented. The calculation of time-dependent probability distributions along various global and local reaction coordinates reveals that the conformational rearrangement of the peptide is rather complex and occurs on at least four timescales: 1) After photoexcitation, the azobenzene unit of the molecule undergoes nonadiabatic photoisomerization within 0.2 ps. 2) On the picosecond timescale, the cooling (13 ps) and the stretching (14 ps) of the photoexcited peptide is observed. 3) Most reaction coordinates exhibit a 50-100 ps component reflecting a fast conformational rearrangement. 4) The 500-1000 ps component observed in the simulation accounts for the slow diffusion-controlled conformational equilibration of the system. The simulation of the photoinduced molecular processes is in remarkable agreement with time-resolved optical and infrared experiments, although the calculated cooling as well as the initial conformational rearrangements of the peptide appear to be somewhat too slow. Based on an ab initio parameterized vibrational Hamiltonian, the time-dependent amide I frequency shift is calculated. Both intramolecular and solvent-induced contributions to the frequency shift were found to change by &2cm ÿ1 , in reasonable agreement with experiment. The potential of transient infrared spectra to characterize the conformational dynamics of peptides is discussed in some detail.
ChemPhysChem, 2009
Structural changes on a broad range of length and time scales are closely connected to biochemical function. The high relevance of conformational dynamics to macromolecular processes has long been hidden to structural characterization methods like X-ray crystallography and NMR. However, more recently, increasing focus is put on biomolecular dynamics [1] for example, in the context of intrinsically disordered proteins, [2] conformational selection in protein-ligand binding, [3] and protein folding. [4] The ability of polypeptide chains and nucleic acids to spontaneously adopt unique three-dimensional structures in aqueous solution is one of the most fundamental examples of biological self-assembly. A missing but crucial part in the current picture of protein folding is the characterisation of the denatured state, the conformational ensemble of unfolded protein chains. The initial event of folding is thought to be intramolecular contact formation of amino acid residues, a process that is mediated by chain diffusion. [5] Similar conformational events are thought to be crucial for functionality of intrinsically disordered protein domains. Fluorescence spectroscopy provides means to follow conformational dynamics on timescales down to those of fluorescence lifetimes of reporter fluorophores, typically a few nanoseconds. [6, 7] Fçrster resonance energy transfer (FRET) [8-10] and photoinduced electron transfer (PET) [11] are two mechanisms that lead to variation of fluorescence emission by distance-dependent fluorescence quenching between a fluorophore and a quenching moiety. Whereas FRET from a donor (D) to an acceptor (A) fluorophore scales with 1/[1+A C H T U N G T R E N N U N G (R/R 0) 6 ], where R 0 is typically between 2 and 8 nm, PET requires contact formation (van der Waals contact) for efficient quenching with a separation between D and A on the sub-nanometre length scale. PET-quenching can occur transiently through molecular collisions, a process called "dynamic quenching", or in molecular complexes that are stable for multiple excitation-emission
ChemPhysChem
The ability of nonlinear electronic spectroscopy to track folding/unfolding processes of proteins in solution by monitoring aromatic interactions is investigated by first-principles simulations of two-dimensional (2D) electronic spectra of a model peptide. A dominant reaction pathway approach is employed to determine the unfolding pathway of a tetrapeptide, which connects the initial folded configuration with stacked aromatic side chains and the final unfolded state with distant noninteracting aromatic residues. The π-stacking and excitonic coupling effects are included through ab initio simulations based on multiconfigurational methods within a hybrid quantum mechanics/molecular mechanics scheme. It is shown that linear absorption spectroscopy in the ultraviolet (UV) region is unable to resolve the unstacking dynamics characterized by the three-step process: T-shapedtwisted offset stackingunstacking. Conversely, pump–probe spectroscopy can be used to resolve aromatic interactions b...
Nature Chemistry
Photochemical & Photobiological Sciences, 2007
When polychromatic X-rays are shined onto crystalline material, they generate a Laue diffraction pattern. At third generation synchrotron radiation sources, a single X-ray pulse of ∼100 ps duration is enough to produce interpretable Laue data from biomolecular crystals. Thus, by initiating biological turnover in a crystalline protein, structural changes along the reaction pathway may be filmed by ultra-fast Laue diffraction. Using laser-light as a trigger, transient species in photosensitive macromolecules can be captured at near atomic resolution with sub-nanosecond time-resolution. Such pump-probe Laue experiments have now reached an outstanding level of sophistication and have found a domain of excellence in the investigation of light-sensitive proteins undergoing cyclic photo-reactions and producing stiff crystals. The main theoretical concepts of Laue diffraction and the challenges associated with time-resolved experiments on biological crystals are recalled. The recent advances in the design of experiments are presented in terms of instrumental choices, data collection strategy and data processing, and some of the inherent difficulties of the method are highlighted. The discussion is based on the example of myoglobin, a protein that has traversed the whole history of pump-probe Laue diffraction, and for which a massive amount of data have provided considerable insight into the understanding of protein dynamics.
Journal of the American Chemical Society
The function of proteins is linked to their conformations that can be resolved with several high-resolution methods. However, only a few methods can provide the temporal order of intermediates and conformational changes, with each having its limitations. Here, we combine pulsed electron−electron double resonance spectroscopy with a microsecond freeze-hyperquenching setup to achieve spatiotemporal resolution in the angstrom range and lower microsecond time scale. We show that the conformational change of the C α-helix in the cyclic nucleotide-binding domain of the Mesorhizobium loti potassium channel occurs within about 150 μs and can be resolved with angstrom precision. Thus, this approach holds great promise for obtaining 4D landscapes of conformational changes in biomolecules.
Physical chemistry chemical physics : PCCP, 2016
In spite of considerable interest in the design of molecular switches towards photo-controllable (bio)materials, few studies focused on the major influence of the surrounding environment on the switch photoreactivities. We present a combined experimental and computational study of a retinal-like molecular switch linked to a peptide, elucidating the effects on the photoreactivity and on the α-helix secondary structure. Temperature-dependent, femtosecond UV-vis transient absorption spectroscopy and high-level hybrid quantum mechanics/molecular mechanics methods were applied to describe the photoisomerization process and the subsequent peptide rearrangement. It was found that the conformational heterogeneity of the ground state peptide controls the excited state potential energy surface and the thermally activated population decay. Still, a reversible α-helix to α-hairpin conformational change is predicted, paving the way for a fine photocontrol of different secondary structure element...
Physical Review X, 2020
Pump-probe measurements aim to capture the motion of electrons and nuclei on their natural timescales (femtoseconds to attoseconds) as chemical and physical transformations take place, effectively making "molecular movies" with short light pulses. However, the quantum dynamics of interest are filtered by the coordinate-dependent matrix elements of the chosen experimental observable. Thus, it is only through a combination of experimental measurements and theoretical calculations that one can gain insight into the internal dynamics. Here, we report on a combination of structural (relativistic ultrafast electron diffraction, or UED) and spectroscopic (time-resolved photoelectron spectroscopy, or TRPES) measurements to follow the coupled electronic and nuclear dynamics involved in the internal conversion and photodissociation of the polyatomic molecule, diiodomethane (CH 2 I 2). While UED directly probes the 3D nuclear dynamics, TRPES only serves as an indirect probe of nuclear dynamics via Franck-Condon factors, but it is sensitive to electronic energies and configurations, via Koopmans' correlations and photoelectron angular distributions. These two measurements are interpreted with trajectory surface hopping calculations, which are capable of simulating the observables for both measurements from the same dynamics calculations. The measurements highlight the nonlocal dynamics captured by different groups of trajectories in the calculations. For the first time, both UED and TRPES are combined with theory capable of calculating the observables in both cases, yielding a direct view of the structural and nonadiabatic dynamics involved.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.