Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
…
12 pages
1 file
We contribute a new dataset 1 for the task of automated fact checking and an evaluation of state of the art algorithms. The dataset includes claims (from speeches, interviews, social media and news articles), review articles published by professional fact checkers and premise articles used by those professional fact checkers to support their review and verify the veracity of the claims. An important challenge in the use of premise articles is the identification of relevant passages that will help to infer the veracity of a claim. We show that transferring a dense passage retrieval model trained with review articles improves the retrieval quality of passages in premise articles. We report results for the prediction of claim veracity by inference from premise articles.
arXiv (Cornell University), 2022
An important component of an automated fact-checking system is the claim check-worthiness detection system, which ranks sentences by prioritising them based on their need to be checked. Despite a body of research tackling the task, previous research has overlooked the challenging nature of identifying check-worthy claims across different topics. In this paper, we assess and quantify the challenge of detecting check-worthy claims for new, unseen topics. After highlighting the problem, we propose the AraCWA model to mitigate the performance deterioration when detecting check-worthy claims across topics. The AraCWA model enables boosting the performance for new topics by incorporating two components for few-shot learning and data augmentation. Using a publicly available dataset of Arabic tweets consisting of 14 different topics, we demonstrate that our proposed data augmentation strategy achieves substantial improvements across topics overall, where the extent of the improvement varies across topics. Further, we analyse the semantic similarities between topics, suggesting that the similarity metric could be used as a proxy to determine the difficulty level of an unseen topic prior to undertaking the task of labelling the underlying sentences.
2020
We propose a novel, attention-based selfsupervised approach to identify “claimworthy” sentences in a fake news article, an important first step in automated factchecking. We leverage aboutness of headline and content using attention mechanism for this task. The identified claims can be used for downstream task of claim verification for which we are releasing a benchmark dataset of manually selected compelling articles with veracity labels and associated evidence. This work goes beyond stylistic analysis to identifying content that influences reader belief. Experiments with three datasets show the strength of our model1.
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019
We contribute the largest publicly available dataset of naturally occurring factual claims for the purpose of automatic claim verification. It is collected from 26 fact checking websites in English, paired with textual sources and rich metadata, and labelled for veracity by human expert journalists. We present an in-depth analysis of the dataset, highlighting characteristics and challenges. Further, we present results for automatic veracity prediction, both with established baselines and with a novel method for joint ranking of evidence pages and predicting veracity that outperforms all baselines. Significant performance increases are achieved by encoding evidence, and by modelling metadata. Our best-performing model achieves a Macro F1 of 49.2%, showing that this is a challenging testbed for claim veracity prediction.
ArXiv, 2021
Given the recent proliferation of false claims online, there has been a lot of manual fact-checking effort. As this is very timeconsuming, human fact-checkers can benefit from tools that can support them and make them more efficient. Here, we focus on building a system that could provide such support. Given an input document, it aims to detect all sentences that contain a claim that can be verified by some previously factchecked claims (from a given database). The output is a reranked list of the document sentences, so that those that can be verified are ranked as high as possible, together with corresponding evidence. Unlike previous work, which has looked into claim retrieval, here we take a document-level perspective. We create a new manually annotated dataset for the task, and we propose suitable evaluation measures. We further experiment with a learning-to-rank approach, achieving sizable performance gains over several strong baselines. Our analysis demonstrates the importance ...
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)
We present SUMO, a neural attention-based approach that learns to establish the correctness of textual claims based on evidence in the form of text documents (e.g., news articles or Web documents). SUMO further generates an extractive summary by presenting a diversified set of sentences from the documents that explain its decision on the correctness of the textual claim. Prior approaches to address the problem of fact checking and evidence extraction have relied on simple concatenation of claim and document word embeddings as an input to claim driven attention weight computation. This is done so as to extract salient words and sentences from the documents that help establish the correctness of the claim. However, this design of claimdriven attention does not capture the contextual information in documents properly. We improve on the prior art by using improved claim and title guided hierarchical attention to model effective contextual cues. We show the efficacy of our approach on datasets concerning political, healthcare, and environmental issues.
Proceedings of the 4th Workshop on Argument Mining
Automatic claim detection is a fundamental argument mining task that aims to automatically mine claims regarding a topic of consideration. Previous works on mining argumentative content have assumed that a set of relevant documents is given in advance. Here, we present a first corpuswide claim detection framework, that can be directly applied to massive corpora. Using simple and intuitive empirical observations, we derive a claim sentence query by which we are able to directly retrieve sentences in which the prior probability to include topic-relevant claims is greatly enhanced. Next, we employ simple heuristics to rank the sentences, leading to an unsupervised corpus-wide claim detection system, with precision that outperforms previously reported results on the task of claim detection given relevant documents and labeled data.
Companion Proceedings of the Web Conference 2021
We present ClaimLinker, a Web service and API that links arbitrary text to a knowledge graph of fact-checked claims, offering a novel kind of semantic annotation of unstructured content. Given a text, ClaimLinker matches parts of it to fact-checked claims mined from popular fact-checking sites and integrated into a rich knowledge graph, thus allowing the further exploration of the linked claims and their associations. The application is based on a scalable, fully unsupervised and modular approach that does not require training or tuning and which can serve high quality results at real time (outperforming existing unsupervised methods). This allows its easy deployment for different contexts and application scenarios.
ArXiv, 2019
In the context of investigative journalism, we address the problem of automatically identifying which claims in a given document are most worthy and should be prioritized for fact-checking. Despite its importance, this is a relatively understudied problem. Thus, we create a new dataset of political debates, containing statements that have been fact-checked by nine reputable sources, and we train machine learning models to predict which claims should be prioritized for fact-checking, i.e., we model the problem as a ranking task. Unlike previous work, which has looked primarily at sentences in isolation, in this paper we focus on a rich input representation modeling the context: relationship between the target statement and the larger context of the debate, interaction between the opponents, and reaction by the moderator and by the public. Our experiments show state-of-the-art results, outperforming a strong rivaling system by a margin, while also confirming the importance of the cont...
2021
We present an overview of the second edition of the CheckThat! Lab at CLEF 2019. The lab featured two tasks in two different languages: English and Arabic. Task 1 (English) challenged the participating systems to predict which claims in a political debate or speech should be prioritized for fact-checking. Task 2 (Arabic) asked to (A) rank a given set of Web pages with respect to a check-worthy claim based on their usefulness for fact-checking that claim, (B) classify these same Web pages according to their degree of usefulness for fact-checking the target claim, (C) identify useful passages from these pages, and (D) use the useful pages to predict the claim’s factuality. CheckThat! provided a full evaluation framework, consisting of data in English (derived from fact-checking sources) and Arabic (gathered and annotated from scratch) and evaluation based on mean average precision (MAP) and normalized discounted cumulative gain (nDCG) for ranking, and F1 for classification. A total of...
RANLP 2017 - Recent Advances in Natural Language Processing Meet Deep Learning, 2017
Given the constantly growing proliferation of false claims online in recent years, there has been also a growing research interest in automatically distinguishing false rumors from factually true claims. Here, we propose a general-purpose framework for fully-automatic fact checking using external sources, tapping the potential of the entire Web as a knowledge source to confirm or reject a claim. Our framework uses a deep neural network with LSTM text encoding to combine semantic kernels with task-specific embeddings that encode a claim together with pieces of potentiallyrelevant text fragments from the Web, taking the source reliability into account. The evaluation results show good performance on two different tasks and datasets: (i) rumor detection and (ii) fact checking of the answers to a question in community question answering forums.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
Conference and Labs of the Evaluation Forum, 2019
Lecture Notes in Computer Science
Journal of Data and Information Quality
RANLP 2017 - Recent Advances in Natural Language Processing Meet Deep Learning, 2017
Lecture Notes in Computer Science, 2018
arXiv (Cornell University), 2020
Advances in Information Retrieval, 2020
Digital Threats: Research and Practice
Conference and Labs of the Evaluation Forum, 2018
Lecture Notes in Computer Science
Conference and Labs of the Evaluation Forum, 2020