Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2009
Abstract: Anonymous signcryption is synonyms of ring signcryption which provides anonymity of the sender along with the advantages of signcryption. Multi receiver signcryption is suited for situation where a sender wants to send a message to multiple ...
2009
This paper puts forward a new efficient construction for Multi-Receiver Signcryption in the Identity-based setting. We consider a scenario where a user wants to securely send a message to a dynamically changing subset of the receivers in such a way that non-members of this subset cannot learn the message. One obvious solution is to signcrypt the message to each member of the subset and transmit it to each of them individually. This requires a very long transmission (the number of receivers times the length of the message) and high computation cost. Another simple solution is to provide a key for every possible subset of receivers. This requires every user to store a huge number of keys. In this case, the storage efficiency is compromised. The goal of this paper is to provide a solution which is efficient in all three measures i.e. transmission length, storage of keys and computation at both ends. We propose a new scheme that achieves both confidentiality and authenticity simultaneously in this setting and is the most efficient scheme to date, in the parameters described above. It breaks the barrier of ciphertext length of linear order in the number of receivers, and achieves constant sized ciphertext, independent of the size of the receiver set. This is the first Multi-receiver Signcryption scheme to do so. We support the scheme with security proofs in the random oracle model under precisely defined security model.
Arxiv preprint arXiv:0909.1412, 2009
Multi-signcryption is used when different senders wants to authenticate a single message without revealing it. This paper proposes a multi signcryption scheme in which no pairing is computed on the signcryption stage and the signatures can be verified publicly.
19th International Conference on Advanced Information Networking and Applications (AINA'05) Volume 1 (AINA papers), 2005
In this paper, we present a new concept called an identity based ring signcryption scheme (IDRSC). We argue that this is an important cryptographic primitive that must be used to protect privacy and authenticity of a collection of users who are connected through an ad-hoc network, such as Bluetooth. We also present an efficient IDRSC scheme based on bilinear pairing. As a regular signcryption scheme, our scheme combines the functionality of signature and encryption schemes. However, the idea is to have an identity based system. In our scheme, a user can anonymously signcrypts a message on behalf of the group. We show that our scheme outperforms a traditional identity based scheme, that is obtained by a standard sign-then-encrypt mechanism, in terms of the length of the ciphertext. We also provide a formal proof of our scheme with the chosen ciphertext security under the Decisional Bilinear Diffie-Hellman assumption, which is believed to be intractable.
Lecture Notes in Computer Science, 2009
Signcryption is a cryptographic primitive which offers authentication and confidentiality simultaneously with a cost lower than signing and encrypting the message independently. Ring signcryption enables a user to signcrypt a message along with the identities of a set of potential senders (that includes him) without revealing which user in the set has actually produced the signcryption. Thus a ring signcrypted message has anonymity in addition to authentication and confidentiality. Ring signcryption schemes have no group managers, no setup procedures, no revocation procedures and no coordination: any user can choose any set of users (ring), that includes himself and signcrypt any message by using his private and public key as well as other users (in the ring) public keys, without getting any approval or assistance from them. Ring Signcryption is useful for leaking trustworthy secrets in an anonymous, authenticated and confidential way.
2013
Signcryption enables a user to perform digital signature for providing authenticity and public key encryption for providing message confidentiality simultaneously in a single logical step with a cost lesser than sign-then-encrypt approach. As the concept of ring signcryption emerged, various practical applications like electronic transaction protocol and key management protocols, felt the requirement of signer's privacy, which was lacking in normal signcryption schemes. Without revealing the users' identity of the ring signcryption can provide confidentiality and authenticity both. In this paper, we present a new ID-based ring signcryption scheme, motivated to the scheme provided by Zhu et al.[9]. Selvi et al. [17] and Wang et al. [23] found some security flaws in the Zhu's scheme , which is being considered and repaired in this paper. The proposed scheme is proven to be secure against adaptive chosen ciphertext ring attacks (IND-IDRSC-CCA2) and secure against an existential forgery for adaptive chosen message attacks (EF-IDRSC-ACMA).
Abstract— Secret and secure delivery of message is most important concern in field of security hence signcryption were used. The term signcryption is a new paradigm in public key cryptography that simultaneously fulfils both the functions of digital signature and public key encryption in a logically single step, and with a cost significantly lower than that required by the traditional “signature and encryption” approach. Identity based signcryption is used to encrypt the message using receiver identity. In this paper we are presenting some signcryption based methods.
Data sharing becoming more and more challenging today there are number of environment like data authenticity, anonymity, availability, access control and efficiency. The concept of ring signature seems promising for data sharing system. A ring signature is a simplified group signature without any manager. It protects the anonymity of the signature producer. In this paper we review the state of the art of ring signature schemes in the literature and investigated their relationship with other existing schemes to improve ring signature like blind signature, threshold signature, identity-based (ID-based) ring signature and other to improve the security.
Generalized signcryption a new domain for diverse application has attracted research community with its three flavors of encryption for confidentiality, signature for authentication and signcryption for both confidentiality and authentication. Our proposed scheme performs multi recipient encryption, multi recipient signature and multi recipient signcryption with significant low computation and communication cost by removing the complexity in the internal structure of the existing schemes and use of elliptic curve cryptography.
In ATC 2007, an identity based signcryption scheme for multiple receivers was proposed by Yu et al. In this paper, we first show that Yu et al.'s signcryption scheme is insecure by demonstrating an universal forgeability attack -anyone can generate a valid signcryption on any message on behalf of any legal user for any set of legal receivers without knowing the secret keys of the legal users. Also, we point out a subtle flaw in the proof of confidentiality given by Yu et al. and show that the scheme does not provide confidentiality. Further, we propose a corrected version of Yu et al.'s scheme and formally prove its security (confidentiality and unforgeability) under the existing security model for signcryption.
Transstellar, 2019
A combination of encryption and signature is a cryptosystem called traditional signcryption, wherein sender authentication is considered a key task to be verified by third party or judge. Without the knowledge of the sender, the judge can authenticate the message using the receiver decryption parameters and the process is called the signcryption scheme. The paper's objective is to analyse the security and confidentiality of message and then to integrate authentication, enforceability, forward secrecy, public verifiable along with packet mechanisms. In this study, using the SSL mechanism the information to be sent is split into various parts and are all parts collected at the receiver end. This mechanism proved to be resource efficient, producing high precise results compared to the previous one.
2010 International Conference on Security and Cryptography (SECRYPT), 2010
Signcryption is a cryptographic primitive which offers authentication and confidentiality simultaneously with a cost lower than signing and encrypting the message independently. Ring signcryption enables a user to anonymously signcrypt a message on behalf of a set of users including himself. Thus a ring signcrypted message has anonymity in addition to authentication and confidentiality. Ring signcryption schemes have no centralized coordination: any user can choose a ring of users, that includes himself and signcrypt any message without any assistance from the other group members. Ring Signcryption is useful for leaking trustworthy secrets in an anonymous, authenticated and confidential way. To the best of our knowledge, ten identity based ring signcryption schemes are reported in the literature. Three of them were proved to be insecure in (Li et al., 2008a), (Zhang et al., 2009a) and (Vivek et al., 2009). Four of them were proved to be insecure in (Selvi et al., 2009). In this pape...
2013
Signcryption is a technique of performing signature and encryption in a single logical step. It is a secure and efficient technique of providing security between the sender and the receiver so that the data send by the sender should be made secure from various types of attacks such as desynchronization attacks, identity disclosure attack and spoofing attacks. Although there are many technique implemented for the generation of signature and encryption. Here a new and efficient technique of signcryption has been implemented in a multireceiver environment on the basis of identity of the receiver. The proposed work given here is the implementation of signcryption scheme using elliptic curve cryptography where the authentication between sender and the receiver is based on the identity of the receiver.
Cryptology ePprint Archive, Report, 2008
Abstract: Generalized signcryption is a new cryptographic primitive in which a signcryption scheme can work as an encryption scheme as well as a signature scheme. This paper presents an identity based generalized signcryption scheme based on bilinear pairing ...
Certificateless cryptography aims at combining the advantages of identity based and public key cryptography, so as to avoid the key escrow problem inherent in the identity based system and cumbersome certificate management in public key infrastructure. Signcryption achieves confidentiality and authentication simultaneously in an efficient manner. Multi-receiver signcryption demands signcrypting the same message efficiently for a large number of receivers. In this note, we strengthen the security of the certificateless multi-receiver signcryption scheme in [23] by proposing suitable enhancement to the scheme.
Journal of Mathematical Cryptology
We introduce a new cryptographic primitive identity-based anonymous proxy signcryption which provides anonymity to the proxy sender while also providing a mechanism to the original sender to expose the identity of the proxy sender in case of misuse. We introduce a formal definition of an identity-based anonymous proxy signcryption (IBAPS) scheme and give a security model for it. We also construct an IBAPS scheme and prove its security under the discrete logarithm assumption and computational Diffie–Hellman assumption. Moreover, we do an efficiency comparison with the existing identity-based signcryption schemes and anonymous signcryption schemes and show that our scheme is much more efficient than those schemes, we also compare the efficiency of our scheme with the available proxy signcryption schemes and show that our scheme provides anonymity to the proxy sender at cost less than those of existing proxy signcryption schemes.
… and Workshops, 2006, 2006
There are many applications in which it is necessary to transmit authenticatable messages while achieving certain privacy goals such as signer ambiguity. The emerging area of vehicular ad-hoc network is a good example application domain with this requirement. The ring signature technique that uses an ad-hoc group of signer identities is a widely used method for generating this type of privacy preserving digital signatures. The identity-based cryptographic techniques do not require certificates. The construction of ring signatures using identity-based cryptography allow for privacy preserving digital signatures to be created in application when certificates are not readily available or desirable such as in vehicle area networks. We propose a new designated verifier identitybased ring signature scheme that is secure against full key exposure attacks even for a small group size. This is a general purpose primitive that can be used in many application domains such as ubiquitous computing where signer ambiguity is required in small groups. We consider the usefulness of identity-based cryptographic primitives in vehicular adhoc networks and use a specific example application to illustrate the use of identity-based ring signatures as a tool to create privacy preserving authenticatable messages.
IEEE Transactions on Computers, 2000
Recently, many multireceiver identity-based encryption schemes have been proposed in the literature. However, none can protect the privacy of message receivers among these schemes. In this paper, we present an anonymous multireceiver identity-based encryption scheme where we adopt Lagrange interpolating polynomial mechanisms to cope with the above problem. Our scheme makes it impossible for an attacker or any other message receiver to derive the identity of a message receiver such that the privacy of every receiver can be guaranteed. Furthermore, the proposed scheme is quite receiver efficient since each of the receivers merely needs to perform twice of pairing computation to decrypt the received ciphertext. We prove that our scheme is secure against adaptive chosen plaintext attacks and adaptive chosen ciphertext attacks. Finally, we also formally show that every receiver in the proposed scheme is anonymous to any other receiver.
Eprint Arxiv Cs 0701044, 2007
This paper presents an identity based multi-proxy multi-signcryption scheme from pairings. In this scheme a proxy signcrypter group could authorized as a proxy agent by the coopration of all members in the original signcryption group. Then the proxy signcryption can be generated by the cooperation of all the signcrypters in the authorized proxy signcrypter group on the behalf of the original signcrypter group. As compared to the scheme of Liu and Xiao, the proposed scheme provides public verifiability of the signature along with simplified key management.
IACR Cryptol. ePrint Arch., 2003
An Identity-based cryptosystem is a Public Key cryptosystem in which the public keys of the entities are their identities, or strings derived from their identities. Signcryption combines digital signatures and encryption with a cost significantly smaller than that required for signature-thenencryption. This paper proposes an ID-based signcryption scheme based on bilinear pairings on elliptic curves. It is shown that the new scheme is an improved version of the existing signcryption scheme [10] by comparing the computations in both the schemes.
With the advent of mobile and portable devices such as cell phones and PDAs, wireless content distribution has become a major means of communications and entertainment. In such applications, a central authority needs to deliver encrypted data to a large number of recipients in such a way that only a privileged subset of users can decrypt it. A broadcasting news channel may face this problem, for example, when a large number of people subscribe to a daily exclusive news feature. This is exactly the kind of problem that broadcast encryption attempts to efficiently solve. On top of this, especially in the current digital era, junk content or spam is a major turn off in almost every Internet application. If all the users who subscribe to the news feed receive meaningless noise or any unwanted content, then the broadcaster is going to lose them. This results in the additional requirement that subscribers have source authentication with respect to their broadcaster. Broadcast signcryption, which enables the broadcaster to simultaneously encrypt and sign the content meant for a specific set of users in a single logical step, provides the most efficient solution to the dual problem of confidentiality and authentication. Efficiency is a major concern, because mobile devices have limited memory and computational power and wireless bandwidth is an extremely costly resource. While several alternatives exist in implementing broadcast signcryption schemes, identity-based (ID-based) schemes are arguably the best suited because of the unique advantage that they provide -any unique, publicly available parameter of a user can be his public key, which eliminates the need for a complex public key infrastructure. In ASIAN 2004, Mu et al. [25] propose what they call an ID-based authenticated broadcast encryption scheme, which is also a broadcast signcryption scheme, as the security goals are the same. They claim that their scheme provides message authentication and confidentiality and formally prove that the broadcaster's secret is not compromised, but in this paper, we demonstrate that even without knowing the broadcaster's secret, it is possible for a legal user to impersonate the broadcaster. We demonstrate this by mounting a universal forgeability attack -any valid user, on receiving and decrypting a valid ciphertext from a broadcaster, can generate a valid ciphertext on any message on behalf of that broadcaster for the same set of legal receivers to which the broadcaster signcrypted the earlier message, without knowing any secrets. Following this, we propose a new ID-based broadcast signcryption (IBBSC) scheme, and 2 Authors Suppressed Due to Excessive Length formally prove its security under the strongest existing security models for broadcast signcryption (IND-CCA2 and EUF-CMA2).
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.