Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2015, Bulletin of mathematical biology
We consider a simple food web with commensal relationship, where organisms utilize both external resources and resources produced by other organisms. We show that in such a community with no competition, there is at most one possible equilibrium for each fixed set of surviving species, and develop a natural condition that determines which species survive based on available resource. Our main result shows that among all possible communities described by equilibria, the one which is stable has the largest number of surviving species and largest combined biomass and hence maximizes utilization of available resources.
Journal of Mathematical Biology, 2004
Basic Lotka-Volterra type models in which mutualism (a type of symbiosis where the two populations benefit both) is taken into account, may give unbounded solutions. We exclude such behaviour using explicit mass balances and study the consequences of symbiosis for the long-term dynamic behaviour of a three species system, two prey and one predator species in the chemostat. We compose a theoretical food web where a predator feeds on two prey species that have a symbiotic relationships. In addition to a species-specific resource, the two prey populations consume the products of the partner population as well. In turn, a common predator forages on these prey populations. The temporal change in the biomass and the nutrient densities in the reactor is described by ordinary differential equations (ode). Since products are recycled, the dynamics of these abiotic materials must be taken into account as well, and they are described by odes in a similar way as the abiotic nutrients. We use numerical bifurcation analysis to assess the long-term dynamic behaviour for varying degrees of symbiosis. Attractors can be equilibria, limit cycles and chaotic attractors depending on the control parameters of the chemostat reactor. These control parameters that can be experimentally manipulated are the nutrient density of the inflow medium and the dilution rate. Bifurcation diagrams for the three species web with a facultative symbiotic association between the two prey populations, are similar to that of a bi-trophic food chain; nutrient enrichment leads to oscillatory behaviour. Predation combined with obligatory symbiotic prey-interactions has a stabilizing effect, that is, there is stable coexistence in a larger part of the parameter space than for a bi-trophic food chain. However, combined with a large growth rate of the predator, the food web can persist only in a relatively small region of the parameter space. Then, two zero-pair bifurcation points are the organizing centers. In each of these points, in addition to a tangent, transcritical and Hopf bifurcation a global heteroclinic bifurcation is emanating. This heteroclinic cycle connects two saddle equilibria where the predator is absent. Under parameter variation the period of the stable limit cycle goes to infinity and the cycle tends to the heteroclinic cycle. At this global bifurcation point this cycle breaks and the boundary of the basin of attraction disappears abruptly because the separatrix disappears together with the cycle. As a result, it becomes possible that a stable two-nutrienttwo-prey population system becomes unstable by invasion of a predator and eventually the predator goes extinct together with the two prey populations, that is, the complete food web is destroyed. This is a form of over-exploitation by the predator population of the two symbiotic prey populations. When obligatory symbiotic prey-interactions are modelled with Liebig's minimum law, where growth is limited by the most limiting resource, more complicated types of bifurcations are found. This results from the fact that the Jacobian matrix changes discontinuously with respect to a varying parameter when another resource becomes most limiting.
Physical review. E, Statistical, nonlinear, and soft matter physics, 2009
We investigate numerically the stability of a model food web, introduced by Nunes Amaral and Meyer [Phys. Rev. Lett. 82, 652 (1999)]. The model describes a system of species located in niches at several levels. Upper level species are predating on those from a lower level. We show that the model web is more stable when it is larger, although the number of niches is more important than the number of levels. The food web is self-organizing itself, trying to reach a certain degree of complexity, i.e., number of species and links among them. If the system cannot achieve this state, it will go extinct. We demonstrate that the average number of links per species and the reduced number of species depend in the same way on the number of niches. We also determine how the stability of the food web depends on another parameter of the model, the killing probability. Despite keeping the ratio of the creation and killing probabilities constant, increasing the latter reduces significantly the stab...
Journal of Theoretical Biology, 2001
The dynamical theory of food webs has been based typically on local stability analysis. The relevance of local stability to food web properties has been questioned because local stability holds only in the immediate vicinity of the equilibrium and provides no information about the size of the basin of attraction. Local stability does not guarantee persistence of food webs in stochastic environments. Moreover, local stability excludes more complex dynamics such as periodic and chaotic behaviors, which may allow persistence. Global stability and permanence could be better criteria of community persistence. Our simulation analysis suggests that these three stability measures are qualitatively consistent in that all three predict decreasing stability with increasing complexity. Some new predictions on how stability depends on food web configurations are generated here: a consumer-victim link has a smaller effect on the probabilities of stability, as measured by all three stability criteria, than a pair of recipient-controlled and donor-controlled links; a recipient-controlled link has a larger effect on the probabilities of local stability and permanence than a donor-controlled link, while they have the same effect on the probability of global stability; food webs with equal proportions of donor-controlled and recipient-controlled links are less stable than those with different proportions.
Journal of Theoretical Biology, 2009
To understand the dynamics of natural species communities, a major challenge is to quantify the relationship between their assembly, stability, and underlying food web structure. To this end, two complementary aspects of food web structure can be related to community stability: sign structure, which refers to the distributions of trophic links irrespective of interaction strengths, and interaction strength structure, which refers to the distributions of interaction strengths with or without consideration of sign structure. In this paper, using data from a set of relatively well documented community food webs, I show that natural communities generally exhibit a sign structure that renders their stability sensitive to interaction strengths. Using a Lotka-Volterra type population dynamical model, I then show that in such communities, individual consumer species with high values of a measure of their total biomass acquisition rate, which I term ''weighted generality'', tend to undermine community stability. Thus consumer species' trophic modules (a species and all its resource links) should be ''selected'' through repeated immigrations and extinctions during assembly into configurations that increase the probability of stable coexistence within the constraints of the community's trophic sign structure. The presence of such constraints can be detected by the incidence and strength of certain non-random structural characteristics. These structural signatures of dynamical constraints are readily measurable, and can be used to gauge the importance of interaction-driven dynamical constraints on communities during and after assembly in natural communities.
Advances in Complex Systems, 2011
In this work we analyse the topological and dynamical properties of a simple model of complex food webs, namely the niche model. In order to underline competition among species, we introduce "prey" and "predators" weighted overlap graphs derived from the niche model and compare synthetic food webs with real data. Doing so, we find new tests for the goodness of synthetic food web models and indicate a possible direction of improvement for existing ones. We then exploit the weighted overlap graphs to define a competition kernel for Lotka-Volterra population dynamics and find that for such a model the stability of food webs decreases with its ecological complexity.
In this paper, a tri-trophic food web model with mixed selection of functional responses is proposed and analyzed. It is assumed that, the food web system consisting of one prey and two predators, in which there is an explicit inter-specific competition between the two predators. Dynamical behavior of all possible equilibrium points has been investigated locally as well as globally. Sufficient conditions for the system to be uniformly persistent and / or extinction have been derived.
Journal of Theoretical Biology, 2013
We present the first individual-based model of community evolution in which linear functional responses suffice to enable the emergence of multiple trophic levels. Evolving communities stochastically alternate between two states that are either dominated by producers or additionally feature diverse consumers. We explain these cyclic transitions by an inexorable evolutionary drive towards particularly fragile community structures that allow extinction cascades causing consumer collapse. Our findings are shown to be robust to a wide range of model variations.
2004
Intraguild predation is a trophic interaction in which two consumers compete for one resource and where one of the consumer species may also feed on its competitor. The intraguild predator’s diet follows from the relative strength of its interactions with its potential prey. Current view holds that weak interactions between species promote the stability of food webs. To the contrary, nutrient enrichment is predicted to destabilize ecosystems. We present a theoretical analysis of the interplay between intraguild predation and nutrient enrichment in a Marr-Pirt chemostat model of a microbial food web. We perform a two-dimensional bifurcation analysis along a gradient of allochtonous nutrient levels and a gradient of one out of two biologically plausible strategies to explore the spectrum of the intraguild predator’s foraging interactions. Both strategies show that intraguild predation may stabilize food chains eliminate chaos, predicted by food chain models give rise to multiple stabl...
Ecological Research, 2008
ABSTRACT Previous studies of communities implicate many potential mechanisms that can create alternate stable states. These include density-dependent foraging behavior, size refuges reached by early colonists, environmental feedback following disturbance, and different initial densities of intraguild predators. Previous work shows that alternate states of varying stability can occur in food webs containing the intraguild predators Blepharisma americanum and Tetrahymena vorax. Differences in colonization history could create the alternate states, consisting of dominance by either Blepharisma or Tetrahymena, but it was unclear whether results depended on effects of initial density or only on changes in the resource base. We manipulated initial densities of both species to determine if density effects alone could create alternate stable states. Convergence of these communities over time indicated that differences in initial density did not create alternate stable states. By default, other factors influenced by colonization history, such as resource availability, may produce alternate states. Models of alternate stable-state phenomena should incorporate differences in resource availability in addition to direct competitive and predatory interactions to provide a more complete depiction of the causes of differences in community composition in otherwise similar habitats.
2006
Summary 1. Successional changes during sequential assembly of food webs were examined. This was carried out by numerical methods, drawing one species at a time from a species pool and obtaining the permanent (persistent) community emerging at each step. Interactions among species were based on some simple rules about body sizes of consumers and their prey, and community dynamics were described in terms of flows of biomass density. 2.
Oecologia, 1998
Traditional ecological theory predicts that the stability of simple food webs will decline with an increasing number of trophic levels and increasing amounts of omnivory. These ideas have been tested using protozoans in laboratory microcosms. However, the results are equivocal, and contrary to expectation, omnivory is common in natural food webs. Two recent developments lead us to re-evaluate these predictions using food webs assembled from protists and bacteria. First, recent modelling work suggests that omnivory is actually stabilizing, providing that interactions are not too strong. Second, it is dicult to evaluate the degree of omnivory of some protozoan species without explicit experimental tests. This study used seven species of ciliated protozoa and a mixed bacterial¯ora to assemble four food webs with two trophic levels, and four webs with three trophic levels. Protist species were assigned a rank for their degree of omnivory using information in the literature and the results of experiments that tested whether the starvation rate of predators was in¯uenced by the amount of bacteria on which they may have fed and whether cannibalism (a form of omnivory) occurred. Consistent with recent modelling work, both bacterivorous and predatory species with higher degrees of omnivory showed more stable dynamics, measured using time until extinction and the temporal variability of population density. Systems with two protist species were less persistent than systems with one protist species, supporting the prediction that longer food chains will be less stable dynamically.
Proceedings of the National Academy of Sciences, 2009
The pattern of predator-prey interactions is thought to be a key determinant of ecosystem processes and stability. Complex ecological networks are characterized by distributions of interaction strengths that are highly skewed, with many weak and few strong interactors present. Theory suggests that this pattern promotes stability as weak interactors dampen the destabilizing potential of strong interactors. Here, we present an experimental test of this hypothesis and provide empirical evidence that the loss of weak interactors can destabilize communities in nature. We ranked 10 marine consumer species by the strength of their trophic interactions. We removed the strongest and weakest of these interactors from experimental food webs containing >100 species. Extinction of strong interactors produced a dramatic trophic cascade and reduced the temporal stability of key ecosystem process rates, community diversity and resistance to changes in community composition. Loss of weak interactors also proved damaging for our experimental ecosystems, leading to reductions in the temporal and spatial stability of ecosystem process rates, community diversity, and resistance. These results highlight the importance of conserving species to maintain the stabilizing pattern of trophic interactions in nature, even if they are perceived to have weak effects in the system. biodiversity and ecosystem functioning ͉ dynamic index ͉ interaction strength ͉ predator-prey interactions ͉ temporal and spatial variability F or decades, scientists have argued over the natural phenomena that allow complex communities to persist in nature (1-3). Randomly assembled communities become less stable with increasing complexity (2, 4), but natural communities are finely structured (5, 6), displaying properties that promote stability despite complexity (7). Experiments (8-10) and theory based on empirical data (11, 12) have shown that real food webs are characterized by few strong interactions embedded in a majority of weak links. It is thought that this nonrandom arrangement of interaction strengths promotes community-level stability by generating negative covariances, which suppress the destabilizing effect of strong consumer-resource interactions . Theoretical studies provide overwhelming support for the idea that the pattern of strong and weak predator-prey interaction strengths confers stability to food webs (11-14); however, these predictions have never been tested experimentally in natural systems.
Journal of Theoretical Biology, 2002
Recent investigations on the structure of complex networks have provided interesting results for ecologists. Being inspired by these studies, we analyse a well-defined set of small model food webs. The extinction probability caused by internal Lotka-Volterra dynamics is compared to the position of species. Simulations have revealed that some global properties of these food webs (e.g. the homogeneity of connectedness) and the positions of species therein (e.g. interaction pattern) make them prone to modelled biotic extinction caused by population dynamical effects. We found that: (a) homogeneity in the connectedness structure increases the probability of extinction events; (b) in addition to the number of interactions, their orientations also influence the future of species in a web. Since species in characteristic network positions are prone to extinction, results could also be interpreted as describing the properties of preferred states of food webs during community assembly. Our results may contribute to understanding the intimate relationship between pattern and process in ecology.
Artificial Life and Robotics, 2009
Iraqi Journal of Science, 2021
This paper aims to study the role of a prey refuge that depends on both prey and predator species on the dynamics of a food web model. It is assumed that the food transfer among the web levels occurs according to Lotka-Volterra functional response. The solution properties, such as existence, uniqueness, and uniform boundedness, are discussed. The local, as well as the global, stabilities of the solution of the system are investigated. The persistence of the system is studied with the assistance of average Lyapunov function. The local bifurcation conditions that may occur near the equilibrium points are established. Finally, numerical simulation is used to confirm our obtained results. It is observed that the system has only one type of attractors that is a stable point, while periodic dynamics do not exist even on the boundary planes.
Mathematical Biosciences, 1983
The ecological assembly of food webs is considered as a process of predator colonizations and extinctions.
The American Naturalist, 1998
In nature, fluxes across habitats often bring both nuory, which plays a central role in consumer-resource intrient and energetic resources into areas of low productivity from areas of higher productivity. These inputs can alter consumption teractions and food web dynamics. They further rates of consumer and predator species in the recipient food webs, suggested that multichannel omnivory can dampen or fathereby influencing food web stability. Starting from a well-studied cilitate trophic cascades. McCann and Hastings (1997) tritrophic food chain model, we investigated the impact of allochrecently found that food web dynamics were stabilized by thonous inputs on the stability of a simple food web model. We weak to moderate amounts of trophic omnivory, one considered the effects of allochthonous inputs on stability of the component of multichannel omnivory. They did not, model using four sets of biologically plausible parameters that rephowever, examine the influence of other types of multiresent different dynamical outcomes. We found that low levels of allochthonous inputs stabilize food web dynamics when species channel omnivory on food web dynamics. In this article, preferentially feed on the autochthonous sources, while either inwe address this problem by extending a simple food creasing the input level or changing the feeding preference to favor chain to include a different component of multichannel allochthonous inputs, or both, led to a decoupling of the food omnivory: allochthonous inputs (inputs entering from chain that could result in the loss of one or all species. We argue another habitat). We demonstrate that allochthonous that allochthonous inputs are important sources of productivity in sources can also stabilize food web dynamics, further many food webs and their influence needs to be studied further. suggesting that donor control may be an important fac-This is especially important in the various systems, such as caves, headwater streams, and some small marine islands, in which more tor in community dynamics and that trophic cascades energy enters the food web from allochthonous inputs than from may be weakened in systems that have relatively large alautochthonous inputs. lochthonous inputs.
2002
Most species live in species-rich food webs; yet, for a century, most mathematical models for population dynamics have included only one or two species. We ask whether such models are relevant to the real world. Two-species population models of an interacting consumer and resource collapse to one-species dynamics when recruitment to the resource population is unrelated to resource abundance, thereby weakening the coupling between consumer and resource. We predict that, in nature, generalist consumers that feed on many species should similarly show one-species dynamics. We test this prediction using cyclic populations, in which it is easier to infer underlying mechanisms, and which are widespread in nature. Here we show that one-species cycles can be distinguished from consumer–resource cycles by their periods. We then analyse a large number of time series from cyclic populations in nature and show that almost all cycling, generalist consumers examined have periods that are consistent with one-species dynamics. Thus generalist consumers indeed behave as if they were one-species populations, and a one-species model is a valid representation for generalist population dynamics in many-species food webs.
Ecological Modelling, 2003
Intraguild predation is a trophic interaction in which two consumers compete for one resource and where one of the consumer species may also feed on its competitor. The intraguild predator's diet follows from the relative strength of its interactions with its potential prey. Current view holds that weak interactions between species promote the stability of food webs. To the contrary, nutrient enrichment is predicted to destabilize ecosystems. We present a theoretical analysis of the interplay between intraguild predation and nutrient enrichment in a Marr-Pirt chemostat model of a microbial food web. We perform a two-dimensional bifurcation analysis along a gradient of allochtonous nutrient levels and a gradient of one out of two biologically plausible strategies to explore the spectrum of the intraguild predator's foraging interactions. Both strategies show that intraguild predation may • stabilize food chains;
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.