Academia.eduAcademia.edu

Abstract

Energy-Based Models (EBMs) capture dependencies between variables by associating a scalar energy to each configuration of the variables. Inference consists in clamping the value of observed variables and finding configurations of the remaining variables that minimize the energy. Learning consists in finding an energy function in which observed configurations of the variables are given lower energies than unobserved ones. The EBM approach provides a common theoretical framework for many learning models, including traditional discriminative and generative approaches, as well as graph-transformer networks, conditional random fields, maximum margin Markov networks, and several manifold learning methods.