Academia.eduAcademia.edu

On a class of semicommutative modules

2009, Proceedings of The Indian Academy of Sciences-mathematical Sciences

Abstract

Let R be a ring with identity, M a right R-module and S = End R (M). In this note, we introduce S-semicommutative, S-Baer, S-q.-Baer and S-p.q.-Baer modules. We study the relations between these classes of modules. Also we prove if M is an S-semicommutative module, then M is an S-p.q.-Baer module if and only if M[x] is an S[x]-p.q.-Baer module, M is an S-Baer module if and only if M[x] is an S[x]-Baer module, M is an S-q.-Baer module if and only if M[x] is an S[x]-q.-Baer module.

Key takeaways

  • In this work we will call M S-semicommutative if for any f ∈ S and m ∈ M, f (m) = 0 implies f g(m) = 0 for every g ∈ S. Then a ring R is a semicommutative ring if and only if R R is an S-semicommutative module where S = End R (R R ) ∼ = R. Note that any submodule N of an S-semicomutative module M is S-semicomutative.
  • Let R be a ring and eRe be a semicommutative subring where e 2 = e ∈ R. If ere = 0 implies er = 0, then eR is an S-semicommutative module where r ∈ R, S = End R (eR).
  • (1) If eR is a semicommutative module (and so eRe is a semicommutative ring), then eR is an S-semicommutative module.
  • Then eR is not an S-semicommutative module where S = End R (eR) ∼ = eRe but S is a semicommutative ring.
  • Furthermore if R is a semicommutative ring and so an S-semicommutative module where S = End R (R), then R/I may not be an S 1 -semicommutative module where S 1 = End R (R/I ) and I is a right ideal.