Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2018, International journal of engineering research and technology
…
4 pages
1 file
Haptic Interface are designed to allow humans to touch virtual objects as they were real. Unfortunately, virtual surface models currently require extensive hand tuning and do not feel authentic, which limits the usefulness and applicability of such systems. The proposed approach of Haptography seeks to address this deficiency by basing models on haptic data recorded from real interactions between a human and a target object. The studio Haptographer uses a fully instrumented stylus to tap, press and stroke an item in a controlled environment while a computer system records position, orientation, velocities, accelerations and forces. The point and touch Haptographer carries a simple instrumented Stylus around during daily life, using it to capture interesting haptic properties of items in the real world. Recorded data is distilled into Haptographer, the Haptic impressing of object or surface patch, including properties such as local shape, stiffness, friction and texture. Finally the ...
IEEE Industrial Electronics Magazine, 2000
Journal of Ambient Intelligence and Smart Environments, 2009
Haptic interaction has for a long time been a promise that has not fully been realized in everyday technology due to several reasons. Already for more than 20 years the research community in the field of human-technology interaction has identified multimodal interaction as a potential next mainstream interaction paradigm to replace graphical user interfaces. At the same time, both personal computers and mobile devices have developed rapidly allowing more computing power, more sophisticated feedback through different channels such as display and audio, and more ways of interaction to be used in everyday computing tasks. Within the past few years, haptic interaction has been under rapid research and development. In this article, we will give an introduction to the present state of the art in haptic interaction technology and its promises in mainstream information and communication technology.
Frontiers in ICT, 2016
The fingertips are one of the most important and sensitive parts of our body. They are the first stimulated areas of the hand when we interact with our environment. Providing haptic feedback to the fingertips in virtual reality could, thus, drastically improve perception and interaction with virtual environments. In this paper, we present a modular approach called HapTip to display such haptic sensations at the level of the fingertips. This approach relies on a wearable and compact haptic device able to simulate 2 Degree of Freedom (DoF) shear forces on the fingertip with a displacement range of ±2 mm. Several modules can be added and used jointly in order to address multi-finger and/or bimanual scenarios in virtual environments. For that purpose, we introduce several haptic rendering techniques to cover different cases of 3D interaction, such as touching a rough virtual surface, or feeling the inertia or weight of a virtual object. In order to illustrate the possibilities offered by HapTip, we provide four use cases focused on touching or grasping virtual objects. To validate the efficiency of our approach, we also conducted experiments to assess the tactile perception obtained with HapTip. Our results show that participants can successfully discriminate the directions of the 2 DoF stimulation of our haptic device. We found also that participants could well perceive different weights of virtual objects simulated using two HapTip devices. We believe that HapTip could be used in numerous applications in virtual reality for which 3D manipulation and tactile sensations are often crucial, such as in virtual prototyping or virtual training.
IEEE Transactions on Haptics, 2020
Tangible objects are used in Virtual Reality (VR) and Augmented Reality (AR) to enhance haptic information on the general shape of virtual objects. However, they are often passive or unable to simulate rich varying mechanical properties. This paper studies the effect of combining simple passive tangible objects and wearable haptics for improving the display of varying stiffness, friction, and shape sensations in these environments. By providing timely cutaneous stimuli through a wearable finger device, we can make an object feel softer or more slippery than it really is, and we can also create the illusion of encountering virtual bumps and holes. We evaluate the proposed approach carrying out three experiments with human subjects. Results confirm that we can increase the compliance of a tangible object by varying the pressure applied through a wearable device. We are also able to simulate the presence of bumps and holes by providing timely pressure and skin stretch sensations. Altering the friction of a tangible surface showed recognition rates above the chance level, albeit lower than those registered in the other experiments. Finally, we show the potential of our techniques in an immersive medical palpation use case in VR. These results pave the way for novel and promising haptic interactions in VR, better exploiting the multiple ways of providing simple, unobtrusive, and inexpensive haptic displays.
Lecture Notes in Computer Science, 2001
This paper presents a short review of the history surrounding the development of haptic feedback systems, from early manipulators and telerobots, used in the nuclear and subsea industries, to today's impressive desktop devices, used to support real-time interaction with 3D visual simulations, or Virtual Reality. Four examples of recent VR projects are described, illustrating the use of haptic feedback in ceramics, aerospace, surgical and defence applications. These examples serve to illustrate the premise that haptic feedback systems have evolved much faster than their visual display counterparts and are, today, delivering impressive peripheral devices that are truly usable by non-specialist users of computing technology.
Communications of the ACM, 2011
After more than 20 years of research and development, are haptic interfaces finally getting ready to enter the computing mainstream? E Ve R S I N Ce the first silentmode cell phones started buzzing in our pockets a few years ago, many of us have unwittingly developed a fumbling familiarity with haptics: technology that invokes our sense of touch. Video games now routinely employ force-feedback joysticks to jolt their players with a sense of impending onscreen doom, while more sophisticated haptic devices have helped doctors conduct surgeries from afar, allowed deskbound soldiers to operate robots in hazardous environments, and equipped musicians with virtual violins. Despite recent technological advances, haptic interfaces have made only modest inroads into the mass consumer market. Buzzing cell phones and shaking joysticks aside, developers have yet to create a breakthrough product-a device that would do for haptics what the iPhone has done for touch screens. The slow pace of market acceptance stems partly from typical new-technology growing pains: high production costs, the lack of standard application programming interfaces (APIs), and the absence of established user interface conventions. Those issues aside, however, a bigger question looms over this fledgling industry: What are haptics good for, exactly? Computer scientists have been exploring haptics for more than two decades. Early research focused largely on the problem of sensory substitution, converting imagery or speech information into electric or vibratory stimulation patterns on the skin. As the technology matured, haptics found new applications in teleoperator systems and virtual environments, useful for robotics and flight simulator applications. Today, some researchers think the big promise of haptics may involve
sition and orientation of the forearm in three-dimensional space. Both of these devices can be used by a remote museum visitor who retrieves a model of the art object over the Internet or other network. Our mission is to develop seamless, device-independent haptic collaboration such that a museum staff member and a museum-goer or art student at a remote location can jointly examine a vase or bronze figure, note its interesting contours and textures, and consider such questions as "Why did the artist make this side rough but that side smooth?" or "What is this indentation on the bottom for?" Figure 1. (a) Researcher exploring a digitized teapot from USC' s Fisher Gallery with the PHANTOM; (b) (c) Researcher calibrating the CyberGrasp force-feedback glove. Digitization There are several commercial 3D digitizing cameras available for applications like the museum, such as the ColorScan and the Virtuoso shape cameras. We have chosen the 3Scan syste
The work in the Touch Lab (formal name: Laboratory for Human and Machine Haptics) is guided by a broad vision of haptics which includes all aspects of information acquisition and object manipulation through touch by humans, machines, or a combination of the two; and the environments can be real or virtual. We conduct research in multiple disciplines such as skin biomechanics, tactile neuroscience, human haptic perception, robot design and control, mathematical modeling and simulation, and software engineering for real-time human-computer interactions. These scientific and technological research areas converge in the context of specific application areas such as the development of virtual reality based simulators for training surgeons, haptic aids for people who are blind, real-time haptic interactions between people across the Internet, and direct control of machines from neural signals in the brain.
Haptic is the science of applying touch (tactile) sensation and control to interact with pc programs. Haptic tool gives people a feel of contact with pc generated environments, so that once virtual objects are touched, they appear real and tangible. Haptic technology refers to era that interfaces the user with a digital environment via the experience of touch with the aid of applying forces, vibrations, and/or motions to the consumer. This mechanical stimulation can be used to assist in the introduction of virtual items (gadgets existing most effective in a laptop simulation), for control of such virtual objects, and to beautify the far flung manipulate of machines and devices. This paper consists of how haptic era works, about its devices.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
2012 IEEE Haptics Symposium (HAPTICS)
Haptics Rendering and Applications, 2012
International Journal for Research in Applied Science & Engineering Technology (IJRASET), 2022
Visual Communications and Image Processing 2010, 2010
Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97
IEEE Computer Graphics and Applications, 1997
Proceedings IEEE International Conference on Multimedia Computing and Systems, 1999
Proceedings of the 2019 ACM Southeast Conference, 2019
Mechatronics, 2014
lifeperception.org