Academia.eduAcademia.edu

ECG data compression techniques-a unified approach

1990, IEEE Transactions on Biomedical Engineering

Abstract

A broad spectrum of techniques for electrocardiogram (ECG) data compression have been proposed during the last three decades. Such techniques have been vital in reducing the digital ECG data volume for storage and transmission. These techniques are essential to a wide variety of applications ranging from diagnostic to ambulatory ECG's. Due to the diverse procedures that have been employed, comparison of ECG compression methods is a major problem. Present evaluation methods preclude any direct comparison among existing ECG compression techniques. The main purpose of this paper is to address this issue and to establish a unified view of ECG compression techniques. ECG data compression schemes are presented in two major groups: direct data compression and transformation methods. The direct data compression techniques are: ECG differential pulse code modulation and entropy coding, AZTEC, Turning-point, CORTES, Fan and SAPA algorithms, peak-picking, and cycle-to-cycle compression methods. The transformation methods briefly presented, include: Fourier, Walsh, and K-L transforms. The theoretical basis behind the direct ECG data compression schemes are presented and classified into three categories: tolerance-comparison compression, differential pulse code modulation (DPCM), and entropy coding methods. The paper concludes with the presentation of a framework for evaluation and comparison of ECG compression schemes.