Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2003, Discrete Applied Mathematics
Isometric subgraphs of hypercubes, or partial cubes as they are also called, are a rich class of graphs that include median graphs, subdivision graphs of complete graphs, and classes of graphs arising in mathematical chemistry and biology. In general, one can recognize whether a graph on n vertices and m edges is a partial cube in O(mn) steps, faster recognition algorithms are only known for median graphs. This paper exhibits classes of partial cubes that are not median graphs but can be recognized in O(m log n) steps. On the way relevant decomposition theorems for partial cubes are derived, one of them correcting an error in a previous paper [W.
European Journal of Combinatorics, 1995
Graphs that can be isometrically embedded into the metric space 1~ are called /rgraphs. Halved cubes play an important role in the characterization of /i-graphs. We present an algorithm that recognizes halved cubes in O(n log 2 n) time. {~
Discrete Mathematics, 2003
Isometric subgraphs of hypercubes are known as partial cubes. The subdivision graph of a graph G is obtained from G by subdividing every edge of G. It is proved that for a connected graph G its subdivision graph is a partial cube if and only if every block of G is either a cycle or a complete graph. Regular partial cubes are also considered. In particular it is shown that among the generalized Petersen graphs P (10, 3) and P (2n, 1), n ≥ 2, are the only (regular) partial cubes.
European Journal of Combinatorics
We fill in the details of the algorithm sketched in [6] and determine its complexity . As a part of this main algorithm , we also describe an algorithm which recognizes graphs which are isometric subgraphs of halved cubes . We discuss possible further applications of the same ideas and give a nice example of non-l 1 -graph allowing a highly isometric embedding into a halved cube .
European Journal of Combinatorics, 2007
The Electronic Journal of Combinatorics, 2020
We investigate the structure of two-dimensional partial cubes, i.e., of isometric subgraphs of hypercubes whose vertex set defines a set family of VC-dimension at most 2. Equivalently, those are the partial cubes which are not contractible to the 3-cube $Q_3$ (here contraction means contracting the edges corresponding to the same coordinate of the hypercube). We show that our graphs can be obtained from two types of combinatorial cells (gated cycles and gated full subdivisions of complete graphs) via amalgams. The cell structure of two-dimensional partial cubes enables us to establish a variety of results. In particular, we prove that all partial cubes of VC-dimension 2 can be extended to ample aka lopsided partial cubes of VC-dimension 2, yielding that the set families defined by such graphs satisfy the sample compression conjecture by Littlestone and Warmuth (1986) in a strong sense. The latter is a central conjecture of the area of computational machine learning, that is far from...
European Journal of Combinatorics, 1996
We fill in the details of the algorithm sketched in [6] and determine its complexity . As a part of this main algorithm , we also describe an algorithm which recognizes graphs which are isometric subgraphs of halved cubes . We discuss possible further applications of the same ideas and give a nice example of non-l 1 -graph allowing a highly isometric embedding into a halved cube .
Graphs are used in modeling interconnections networks and measuring their properties. Knowing and understanding the graph theoretical/combinatorial properties of the underlying networks are necessary in developing more efficient parallel algorithms as well as fault-tolerant communication/routing algorithms [1] The hypercube is one of the most versatile and efficient networks yet discovered for parallel computation. One generalization of the hypercube is the n-cube Q(n,m) which is a graph whose vertices are all the binary n-tuples, such that two vertices are adjacent whenever they differ in exactly m coordinates. The k-subgraph of the Generalized n-cube Q k (n,m) is the induced subgraph of the n-cube Q(n,m) where q=2, such that a vertex v ∈ V(Q k (n,m)) if and only if v ∈ V(Q(n,m)) and v is of parity k. This paper presents some degree properties of Q k (n,m) as well as some isomorphisms it has with other graphs, namely: 1)) 2 , (1 n Q n− is isomorphic to Kn 2)) 2 , (i n Q k is isomor...
Discussiones Mathematicae Graph Theory, 2003
Tree-like isometric subgraphs of hypercubes, or tree-like partial cubes as we shall call them, are a generalization of median graphs. Just as median graphs they capture numerous properties of trees, but may contain larger classes of graphs that may be easier to recognize than the class of median graphs. We investigate the structure of treelike partial cubes, characterize them, and provide examples of similarities with trees and median graphs. For instance, we show that the cube graph of a tree-like partial cube is dismantlable. This in particular implies that every tree-like partial cube G contains a cube that is invariant under every automorphism of G. We also show that weak retractions preserve tree-like partial cubes, which in turn implies that * Supported by the Ministry of Education, Science and Sport of Slovenia under the grants Z1-3073, and 0101-P-504, respectively. 228 B. Brešar, W. Imrich and S. Klavžar every contraction of a tree-like partial cube fixes a cube. The paper ends with several Frucht-type results and a list of open problems.
Discrete Mathematics, 2008
Partial cubes are isometric subgraphs of hypercubes. Structures on a graph defined by means of semicubes, and Djoković's and Winkler's relations play an important role in the theory of partial cubes. These structures are employed in the paper to characterize bipartite graphs and partial cubes of arbitrary dimension. New characterizations are established and new proofs of some known results are given. The operations of Cartesian product and pasting, and expansion and contraction processes are utilized in the paper to construct new partial cubes from old ones. In particular, the isometric and lattice dimensions of finite partial cubes obtained by means of these operations are calculated.
AUSTRALASIAN JOURNAL OF …, 2003
All cubic partial cubes (i.e., cubic isometric subgraphs of hypercubes) up to 30 vertices and all edge-critical partial cubes up to 14 vertices are presented. The lists of graphs were confirmed by computer search to be complete. Non-trivial cubic partial cubes on 36, 42, and 48 vertices are also constructed.
Ars Combinatoria - ARSCOM, 2004
Isometric subgraphs of hypercubes are known as partial cubes. Edge-critical partial cubes are introduced as the partial cubes G for which G?e is not a partial cube for any edge e of G. An expansion theorem is proved by means of which one can generate many edge-critical partial cubes. Edge-critical partial cubes are characterized among the Cartesian product graphs. We also show that the 3-cube and the subdivision graph of K 4 are the only edge-critical partial cubes on at most 10 vertices.
Discussiones Mathematicae Graph Theory, 2006
This paper concerns when the complete graph on n vertices can be decomposed into d-dimensional cubes, where d is odd and n is even. (All other cases have been settled.) Necessary conditions are that n be congruent to 1 modulo d and 0 modulo 2 d . These are known to be sufficient for d equal to 3 or 5. For larger values of d, the necessary conditions are asymptotically sufficient by Wilson's results. We prove that for each odd d there is an infinite arithmetic progression of even integers n for which a decomposition exists. This lends further weight to a long-standing conjecture of Kotzig.
Journal of the Australian Mathematical Society, 1996
A graph H decomposes into a graph G if one can write H as an edge-disjoint union of graphs isomorphic to G. H decomposes into D, where D is a family of graphs, when H can be written as a union of graphs each isomorphic to some member of D, and every member of D is represented at least once. In this paper it is shown that the d-dimensional cube Qt decomposes into any graph G of size d each of whose blocks is either an even cycle or an edge. Furthermore, Qj decomposes into D, where D is any set of six trees of size d.
Discuss. Math. Graph Theory, to appear
The Θ-graph Θ(G) of a partial cube G is the intersection graph of the equivalence classes of the Djoković-Winkler relation. Θ-graphs that are 2-connected, trees, or complete graphs are characterized. In particular, Θ(G) is complete if and only if G can be obtained from K 1 by a sequence of (newly introduced) dense expansions. Θ-graphs are also compared with familiar concepts of crossing graphs and τ -graphs.
Discrete Mathematics, 2007
In this paper it is shown that a class of almost-median graphs that includes all planar almost-median graphs can be recognized in O(m log n) time, where n denotes the number of vertices and m the number of edges. Moreover, planar almost-median graphs can be recognized in linear time. As a key auxiliary result we prove that all bipartite outerplanar graphs are isometric subgraphs of the hypercube and that the embedding can be effected in linear time.
Theoretical Computer Science, 1999
by a dynamic location problem for graphs, Chung, Graham and Saks introduced a graph parameter called windex. Graphs of windex 2 turned out to be, in graph-theoretic language, retracts of hypercubes. These graphs are also known as median graphs and can be characterized as partial binary Hamming graphs satisfying a convexity condition. In this paper an O(n3/' log n) algorithm is presented to recognize these graphs. As a by-product we are also able to isometrically embed median graphs in hypercubes in O(m log n) time.
Journal of Computer and System Sciences, 2022
The median of a set of vertices P of a graph G is the set of all vertices x of G minimizing the sum of distances from x to all vertices of P. In this paper, we present a linear time algorithm to compute medians in median graphs, improving over the existing quadratic time algorithm. We also present a linear time algorithm to compute medians in the 1-cube complexes associated with median graphs. Median graphs constitute the principal class of graphs investigated in metric graph theory and have a rich geometric and combinatorial structure, due to their bijections with CAT(0) cube complexes and domains of event structures. Our algorithm is based on the majority rule characterization of medians in median graphs and on a fast computation of parallelism classes of edges (Θ-classes or hyperplanes) via Lexicographic Breadth First Search (LexBFS). To prove the correctness of our algorithm, we show that any LexBFS ordering of the vertices of G satisfies the following fellow traveler property of independent interest: the parents of any two adjacent vertices of G are also adjacent. Using the fast computation of the Θ-classes, we also compute the Wiener index (total distance) of G in linear time and the distance matrix in optimal quadratic time.
Journal of Combinatorial Theory, Series A, 1988
2007
The Θ-graph Θ(G) of a partial cube G is the intersection graph of the equivalence classes of the Djoković-Winkler relation. Θ-graphs that are 2-connected, trees, or complete graphs are characterized. In particular, Θ(G) is complete if and only if G can be obtained from K 1 by a sequence of (newly introduced) dense expansions. Θ-graphs are also compared with familiar concepts of crossing graphs and τ -graphs.
AKCE International Journal of Graphs and Combinatorics, 2020
The n-dimensional augmented cube AQ n is a variation of the hypercube Q n : It is a ð2n À 1Þ-regular and ð2n À 1Þ-connected graph on 2 n vertices. One of the fundamental properties of AQ n is that it is pancyclic, that is, it contains a cycle of every length from 3 to 2 n : In this paper, we generalize this property to k-regular subgraphs for k ¼ 3 and k ¼ 4: We prove that the augmented cube AQ n with n ! 4 contains a 4-regular, 4-connected and pancyclic subgraph on l vertices if and only if 8 l 2 n : Also, we establish that for every even integer l from 4 to 2 n , there exists a 3-regular, 3-connected and pancyclic subgraph of AQ n on l vertices.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.