Academia.eduAcademia.edu

A Bayesian Bootstrap for Finite State Markov Chains 1017

1997, Statistica sinica

Abstract

The Bayesian bootstrap for Markov chains is the Bayesian analogue of the bootstrap method for Markov chains. We construct a random-weighted empirical distribution, based on i.i.d. exponential random variables, to simulate the posterior distribution of the transition probability, the stationary probability, as well as the first hitting time up to a specific state, of a finite state ergodic Markov chain. The large sample theory is developed which shows that with a matrix beta prior on the transition probability, the Bayesian bootstrap procedure is second-order consistent for approximating the pivot of the posterior distributions of the transition probability. The small sample properties of the Bayesian bootstrap are also discussed by a simulation study.