Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2008
Abstract. In today’s society the exploration of one or more databases to extract information or knowledge to support management is a critical success factor for an organization. However, it is well known that several problems can affect data quality. These problems have a negative effect in the results extracted from data, influencing their correction and validity. In this context, it is quite important to understand theoretically and in practice these data problems. This paper presents a taxonomy of data quality problems, derived from real-world databases. The taxonomy organizes the problems at different levels of abstraction. Methods to detect data quality problems represented as binary trees are also proposed for each abstraction level. The paper also compares this taxonomy with others already proposed in the literature. 1.
Journal of Data and Information Quality
In today's society the exploration of one or more databases to extract information or knowledge to support management is a critical success factor for an organization. However, it is well known that several problems can affect data quality. These problems have a negative effect in the results extracted from data, influencing their correction and validity. In this context, it is quite important to understand theoretically and in practice these data problems. This paper presents a taxonomy of data quality problems, derived from real-world databases. The taxonomy organizes the problems at different levels of abstraction. Methods to detect data quality problems represented as binary trees are also proposed for each abstraction level. The paper also compares this taxonomy with others already proposed in the literature.
2005
The exploration of data to extract information or knowledge to support decision making is a critical success factor for an organization in today's society. However, several problems can affect data quality. These problems have a negative effect in the results extracted from data, affecting their usefulness and correctness. In this context, it is quite important to know and understand the data problems. This paper presents a taxonomy of data quality problems, organizing them by granularity levels of occurrence. A formal definition is presented for each problem included. The taxonomy provides rigorous definitions, which are information-richer than the textual definitions used in previous works. These definitions are useful to the development of a data quality tool that automatically detects the identified problems.
Information & Management, 1980
Information & Management, 1980
Until recently, data quality was poor'.y understood and seldom achieved, yet it is essential to tlihe effective use of information systems. This paper discusses/ the nature and importance of data quality. The role of dataquality is placed in the life cycle framework. Many new concepts, tools and i techniques from both programming lang,uages and database management systems are presented and rhiated to data quality. In particular, the coqcept of a databrlse constraint is considered in detail. Some current limitation/s and research directions are proposed.
Proceedings of the 8th international workshop on Software quality - WoSQ '11, 2011
This industrial contribution describes a tool support approach to assessing the quality of relational databases. The approach combines two separate audits-an audit of the database structure as described in the schema and an audit of the database content at a given point in time. The audit of the database schema checks for design weaknesses, data rule violations and deviations from the original data model. It also measures the size, complexity and structural quality of the database. The audit of the database content compares the state of selected data attributes to identify incorrect data and checks for missing and redundant records. The purpose is to initiate a data clean-up process to ensure or restore the quality of the data.
Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, 2017
The research discusses the issue how to describe data quality and what should be taken into account when developing an universal data quality management solution. The proposed approach is to create quality specifications for each kind of data objects and to make them executable. The specification can be executed step-by-step according to business process descriptions, ensuring the gradual accumulation of data in the database and data quality checking according to the specific use case. The described approach can be applied to check the completeness, accuracy, timeliness and consistency of accumulated data.
2018
The paper discusses an external solution for data quality management in information systems. In contradiction to traditional data quality assurance methods, the proposed approach provides the usage of a domain specific language (DSL) for description data quality models. Data quality models consists of graphical diagrams, which elements contain requirements for data object’s values and procedures for data object’s analysis. The DSL interpreter makes the data quality model executable therefore ensuring measurement and improving of data quality. The described approach can be applied: (1) to check the completeness, accuracy and consistency of accumulated data; (2) to support data migration in cases when software architecture and/or data models are changed; (3) to gather data from different data sources and to transfer them to data warehouse. © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of organizing committee of the scientific committee of the internat...
Both products and services must satisfy customers' requirements. Information Systems and their Databases are the main support for organizations to collect, store, and retrieval these requirement data. If any of these operations are badly executed or not made on the right data, they will not produce useful results, and our aim will not get satisfied. That is the reason for which we are interested in data quality. This paper deals about what data quality is, which are the most important dimension of data quality and how we can design quality databases.
Procedia Computer Science, 2017
The paper discusses an external solution for data quality management in information systems. In contradiction to traditional data quality assurance methods, the proposed approach provides the usage of a domain specific language (DSL) for description data quality models. Data quality models consists of graphical diagrams, which elements contain requirements for data object's values and procedures for data object's analysis. The DSL interpreter makes the data quality model executable therefore ensuring measurement and improving of data quality. The described approach can be applied: (1) to check the completeness, accuracy and consistency of accumulated data; (2) to support data migration in cases when software architecture and/or data models are changed; (3) to gather data from different data sources and to transfer them to data warehouse.
Integrity, Internal Control and Security in Information Systems, 2002
This paper first examines various issues on data quality and provides an overview of current research in the area. Then it focuses on research at the MITRE Corporation to use annotations to manage data quality. Next some of the emerging directions in data quality including managing quality for the semantic web and the relationships between data quality and data mining will be discussed. Finally some of the directions for data quality will be provided.
International Journal of Business Information Systems, 2016
Data quality has significance to companies, but is an issue that can be challenging to approach and operationalise. This study focuses on data quality from the perspective of operationalisation by analysing the practices of a company that is a world leader in its business. A model is proposed for managing data quality to enable evaluation and operationalisation. The results indicate that data quality is best ensured when organisation specific aspects are taken into account. The model acknowledges the needs of different data domains, particularly those that have master data characteristics. The proposed model can provide a starting point for operationalising data quality assessment and improvement. The consequent appreciation of data quality improves data maintenance processes, IT solutions, data quality and relevant expertise, all of which form the basis for handling the origins of products.
Proceedings of the 16th International …, 2011
Data quality (DQ) assessment can be significantly enhanced with the use of the right DQ assessment methods, which provide automated solutions to assess DQ. The range of DQ assessment methods is very broad: from data profiling and semantic profiling to data matching and data validation. This paper gives an overview of current methods for DQ assessment and classifies the DQ assessment methods into an existing taxonomy of DQ problems. Specific examples of the placement of each DQ method in the taxonomy are provided and illustrate why the method is relevant to the particular taxonomy position. The gaps in the taxonomy, where no current DQ methods exist, show where new methods are required and can guide future research and DQ tool development.
Thirty years ago, software was not considered a concrete value. Everyone agreed on its importance, but it was not considered as a good or possession. Nowadays, software is part of the balance of an organization. Data is slowly following the same process. The information owned by an organization is an important part of its assets. Information can be used as a competitive advantage. However, data has long been underestimated by the software community. Usually, methods and techniques apply to software (including data schemata), but the data itself has often been considered as an external problem. Validation and verification techniques usually assume that data is provided by an external agent and concentrate only on software.
Encyclopedia of Database Technologies and Applications
Data quality (DQ) assessment and improvement in larger information systems would often not be feasible without using suitable " DQ methods " , which are algorithms that can be automatically executed by computer systems to detect and/or correct problems in datasets. Currently, these methods are already essential, and they will be of even greater importance as the quantity of data in organisational systems grows. This paper provides a review of existing methods for both DQ assessment and improvement and classifies them according to the DQ problem and problem context. Six gaps have been identified in the classification, where no current DQ methods exist, and these show where new methods are required as a guide for future research and DQ tool development.
JUCS - Journal of Universal Computer Science, 2020
The paper proposes a new data object-driven approach to data quality evaluation. It consists of three main components: (1) a data object, (2) data quality requirements, and (3) data quality evaluation process. As data quality is of relative nature, the data object and quality requirements are (a) use-case dependent and (b) defined by the user in accordance with his needs. All three components of the presented data quality model are described using graphical Domain Specific Languages (DSLs). In accordance with Model-Driven Architecture (MDA), the data quality model is built in two steps: (1) creating a platform-independent model (PIM), and (2) converting the created PIM into a platform-specific model (PSM). The PIM comprises informal specifications of data quality. The PSM describes the implementation of a data quality model, thus making it executable, enabling data object scanning and detecting data quality defects and anomalies. The proposed approach was applied to open data sets, ...
Data quality assessment and data cleaning tasks have traditionally been addressed through procedural solutions. Most of the time, those solutions have been applicable to specific problems and domains. In the last few years we have seen the emergence of more generic solutions; and also of declarative and rule-based specifications of the intended solutions of data cleaning processes. In this chapter we review some of those historical and recent developments.
Nowadays, activities and decisions making in an organization is based on data and information obtained from data analysis, which provides various services for constructing reliable and accurate process. As data are significant resources in all organizations the quality of data is critical for managers and operating processes to identify related performance issues. Moreover, high quality data can increase opportunity for achieving top services in an organization. However, identifying various aspects of data quality from definition, dimensions, types, strategies, techniques are essential to equip methods and processes for improving data. This paper focuses on systematic review of data quality dimensions in order to use at proposed framework which combining data mining and statistical techniques to measure dependencies among dimensions and illustrate how extracting knowledge can increase process quality.
Proceedings of the 5th International Conference on Data Management Technologies and Applications, 2016
Dealing with data quality related problems is an important issue that all organizations face in realizing and sustaining data intensive advanced applications. Upon detecting these problems in datasets, data analysts often register them in issue tracking systems in order to address them later on categorically and collectively. As there is no standard format for registering these problems, data analysts often describe them in natural languages and subsequently rely on ad-hoc, non-systematic, and expensive solutions to categorize and resolve registered problems. In this contribution we present a formal description of an innovative data quality resolving architecture to semantically and dynamically map the descriptions of data quality related problems to data quality attributes. Through this mapping, we reduce complexity -as the dimensionality of data quality attributes is far smaller than that of the natural language space -and enable data analysts to directly use the methods and tools proposed in literature. Furthermore, through managing data quality related problems, our proposed architecture offers data quality management in a dynamic way based on user generated inputs. The paper reports on a proof of concept tool and its evaluation.
1998
The problem of modeling semi-structured data is important in many application areas such as multimedia data management, biological databases, digital libraries, and data integration. Graph schemas (Buneman et al. 1997) have been proposed recently as a simple and elegant formalism for representing semistructured data. In this model, schemas are represented as graphs whose edges are labeled with unary formulae of a theory, and the notions of conformance of a database to a schema and of subsumption between two ...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.