Wageningen University
Forest Ecology and Forest Management Group
1. Decomposition is a key ecosystem process that determines nutrient and carbon cycling. Individual leaf and litter characteristics are good predictors of decomposition rates within biomes worldwide, but knowledge of which traits are the... more
1. Decomposition is a key ecosystem process that determines nutrient and carbon cycling. Individual leaf and litter characteristics are good predictors of decomposition rates within biomes worldwide, but knowledge of which traits are the best predictors for tropical species remains scarce. Also, the effect of a species' position on the leaf economics spectrum (LES) and regeneration light requirements on decomposition rate are, until now, unknown. In addition, land use change is the most immediate and widespread global change driver, with potentially significant consequences for decomposition. 2. Here we evaluate 14 leaf and litter traits, and litter decomposition rates of 23 plant species from three different land use types (mature forest, secondary forest and agricultural field) in the moist tropics of lowland Bolivia. 3. Leaf and litter traits were closely associated and showed, in line with the LES, a slow-fast continuum ranging from species with tough, well-protected leaves (high leaf density, leaf dry matter content, force to punch and litter C : N ratio) to species with cheap, productive leaves [high specific leaf area (SLA) and nutrient concentrations in leaves and litter]. 4. Fresh green leaf traits were better predictors of decomposition rate than litter traits, and leaf nitrogen concentration (LNC) was a better predictor of decomposition than leaf phosphorus concentration, despite the widely held belief that tropical forests are P-limited. 5. Multiple regression analysis showed that LNC, SLA and chlorophyll content per unit leaf area had positive effects on decomposition, explaining together 65-69% of the variation. Species position on the LES and regeneration light requirements were also positively related to decomposition. 6. Plant communities from agricultural fields had significantly higher LNC and SLA than communities from mature forest and secondary forest. Species from agricultural fields had higher average decomposition rates than species from other ecosystems and tended to be at the fast end of the LES. 7. Both individual traits of living leaves and species' position on the LES persist in litter, so that leaves lead influential afterlifes, affecting decomposition, nutrient and carbon cycling.
Three hypotheses have been proposed to explain the functional relationship between seed mass and seedling performance: the reserve effect (larger seeds retain a larger proportion of reserves after germinating), the metabolic effect... more
Three hypotheses have been proposed to explain the functional relationship between seed mass and seedling performance: the reserve effect (larger seeds retain a larger proportion of reserves after germinating), the metabolic effect (seedlings from larger seeds have slower relative growth rates), and the seedling-size effect (larger seeds produce larger seedlings). We tested these hypotheses by growing four Mediterranean Quercus species under different light conditions (3, 27, and 100% of available radiation). We found evidence for two of the three hypotheses, but none of the four species complied with all three hypotheses at the same time. The reserve effect was not found in any species, the metabolic effect was found in three species (Q. ilex, Q. pyrenaica, and Q. suber), and the seedling-size effect in all species. Light availability significantly affected the relationships between seed size and seedling traits. For Q. ilex and Q. canariensis, a seedling-size effect was found under all three light conditions, but only under the lowest light (3%) for Q. suber and Q. pyrenaica. In all species, the correlation between seed mass and seedling mass increased with a decrease in light, suggesting that seedlings growing in low light depend more upon their seed reserves. A causal model integrates the three hypotheses, suggesting that larger seeds generally produced larger seedlings.
- by Rafael Villar and +1
- •
- Seed germination
Understanding the impacts of combined resource supplies on seedlings is critical to enable prediction of establishment growth, and forest dynamics. We investigated the effects of irradiance and water treatments on absolute growth, and... more
Understanding the impacts of combined resource supplies on seedlings is critical to enable prediction of establishment growth, and forest dynamics. We investigated the effects of irradiance and water treatments on absolute growth, and relative growth rate (RGR) and its components, for seedlings of four Quercus species differing in leaf habit and with a wide variation in seed mass. Plants were grown for 6.5 months at three levels of irradiance (100, 27, and 3% daylight), and treated during the last 2.5 months with two watering treatments (frequent watering v. suspended watering). Both shade and drought reduced seedling growth rates, with a significant interaction: under full irradiance the drought treatment had a stronger impact on RGR and final biomass than under deep shade. For three species, seed mass was positively related to absolute growth, with stronger correlations at lower irradiance. The evergreen species grew faster than the deciduous species, though leaf habit accounted for a minor part of the interspecific variation in absolute growth. Seedling biomass was determined positively either by RGR or seed mass; RGR was positively linked with net assimilation rate (NAR) and leaf mass fraction (LMF), and seed mass was negatively linked with RGR and LMF, but positively linked with NAR. Seedling RGR was not correlated with light-saturated net photosynthetic rate, but was strongly correlated with the net carbon balance estimated, from photosynthetic light-response curves, considering daily variation in irradiance. These findings suggest an approach to applying short-term physiological measurements to predict the RGR and absolute growth rate of seedlings in a wide range of combinations of irradiance and water supplies.
- by Rafael Villar and +2
- •
Water availability is one of the key environmental factors that affect plant establishment and distribution. In many regions water availability will decline with climate change, exposing small seedlings to a greater likelihood of drought.... more
Water availability is one of the key environmental factors that affect plant establishment and distribution.
In many regions water availability will decline with climate change, exposing small seedlings to a
greater likelihood of drought. In this study, 17 leaves, stem, root, and whole-plant traits of ten woody
Mediterranean species were measured under favourable growing conditions and seedling drought survival
was evaluated during a simulated dry-down episode. The aims of this study were: i) to assess
drought survival of different species, ii) to analyse which functional traits predict drought survival time,
and iii) to explain species distribution in the field, based on species drought survival and drought
strategies. Drought survival time varied ten-fold across species, from 19 to 192 days. Across species,
drought survival was positively related to the rooting depth per leaf area, i.e., the ability to acquire water
from deeper soil layers while reducing transpiring leaf area. Drought survival time was negatively related
to species ability to grow quickly, as indicated by high relative growth and net assimilation rates. Drought
survival also explained species distribution in the field. It was found that species were sorted along a
continuum, ranging between two contrasting species functional extremes based on functional traits and
drought performance. One extreme consisted of acquisitive fast-growing deciduous species, with thin,
soft metabolically active leaves, with high resource use and vulnerability to drought. The opposite
extreme consisted of conservative slow-growing evergreen species with sclerophyllous leaves, deep
roots, a low transpiring area, and low water use, resulting in high drought survival and drought tolerance.
The results show that these drought strategies shape species distribution in this Mediterranean area.
In many regions water availability will decline with climate change, exposing small seedlings to a
greater likelihood of drought. In this study, 17 leaves, stem, root, and whole-plant traits of ten woody
Mediterranean species were measured under favourable growing conditions and seedling drought survival
was evaluated during a simulated dry-down episode. The aims of this study were: i) to assess
drought survival of different species, ii) to analyse which functional traits predict drought survival time,
and iii) to explain species distribution in the field, based on species drought survival and drought
strategies. Drought survival time varied ten-fold across species, from 19 to 192 days. Across species,
drought survival was positively related to the rooting depth per leaf area, i.e., the ability to acquire water
from deeper soil layers while reducing transpiring leaf area. Drought survival time was negatively related
to species ability to grow quickly, as indicated by high relative growth and net assimilation rates. Drought
survival also explained species distribution in the field. It was found that species were sorted along a
continuum, ranging between two contrasting species functional extremes based on functional traits and
drought performance. One extreme consisted of acquisitive fast-growing deciduous species, with thin,
soft metabolically active leaves, with high resource use and vulnerability to drought. The opposite
extreme consisted of conservative slow-growing evergreen species with sclerophyllous leaves, deep
roots, a low transpiring area, and low water use, resulting in high drought survival and drought tolerance.
The results show that these drought strategies shape species distribution in this Mediterranean area.
- by Rafael Villar and +1
- •
- Drought, Growth, Plant Roots, Specific leaf area
Light partitioning is thought to contribute to the coexistence of rain forest tree species. This study evaluates the three premises underlying the light partitioning hypothesis; 1) there is a gradient in light availability at the forest... more
Light partitioning is thought to contribute to the coexistence of rain forest tree species. This study evaluates the three premises underlying the light partitioning hypothesis; 1) there is a gradient in light availability at the forest floor, 2) tree species show a differential distribution with respect to light, and 3) there is a trade-off in species performance that explains their different positions along the light gradient. To address these premises, we studied the light environment, growth, and survival of saplings of ten non-pioneer tree species in a Bolivian moist forest. Light availability in the understorey was relatively high, with a mean canopy openness of 3.5% and a mean direct site factor of 6.8%. Saplings of two light demanding species occurred at significantly higher light levels than the shade tolerant species. The proportion of saplings in low-light conditions was negatively correlated with the successional position of the species. Light-demanding species were characterised by a low share of their saplings in low-light conditions, a high sapling mortality, a fast height growth and a strong growth response to light. These data show that all three premises for light partitioning are met. There is a clear gradient in shade-tolerance within the group of non-pioneer species leading to a tight packing of species along the small range of light environments found in the understorey.
- by Eric Arets and +1
- •
- Plant Ecology, Plant Biology, Ecology, Rain forest
Litter decomposition recycles nutrients and causes large fluxes of carbon dioxide into the atmosphere. It is typically assumed that climate, litter quality and decomposer communities determine litter decay rates, yet few comparative... more
Litter decomposition recycles nutrients and causes large fluxes of carbon dioxide into the atmosphere. It is typically assumed that climate, litter quality and decomposer communities determine litter decay rates, yet few comparative studies have examined their relative contributions in tropical forests. 2. We used a short-term litterbag experiment to quantify the effects of litter quality, placement and mesofaunal exclusion on decomposition in 23 tropical forests in 14 countries. Annual precipitation varied among sites (760-5797 mm). At each site, two standard substrates ( Raphia farinifera and Laurus nobilis ) were decomposed in fine-and coarse-mesh litterbags both above and below ground for approximately 1 year.
- by Lourens Poorter and +2
- •
- Carbon Dioxide, Decomposition, Ecology, Climate
While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few 'hyperdominant' species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle,... more
While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few 'hyperdominant' species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only E1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region.
- by Ima Vieira and +7
- •
The crucial role of biodiversity in the links between ecosystems and societies has been repeatedly highlighted both as source of wellbeing and as a target of human actions, but not all aspects of biodiversity are equally important to... more
The crucial role of biodiversity in the links between ecosystems and societies has been repeatedly highlighted both as source of wellbeing and as a target of human actions, but not all aspects of biodiversity are equally important to different ecosystem services. Similarly, different social actors have different perceptions of and access to ecosystem services, and therefore, they have different wants and capacities to select directly or indirectly for particular biodiversity and ecosystem characteristics. Their choices feed back onto the ecosystem services provided to all parties involved and in turn, affect future decisions. Despite this recognition, the research communities addressing biodiversity, ecosystem services, and human outcomes have yet to develop frameworks that adequately treat the multiple dimensions and interactions in the relationship. Here, we present an interdisciplinary framework for the analysis of relationships between functional diversity, ecosystem services, and human actions that is applicable to specific social environmental systems at local scales. We connect the mechanistic understanding of the ecological role of diversity with its social relevance: ecosystem services. The framework permits connections between functional diversity components and priorities of social actors using land use decisions and ecosystem services as the main links between these ecological and social components. We propose a matrix-based method that provides a transparent and flexible platform for quantifying and integrating social and ecological information and negotiating potentially conflicting land uses among multiple social actors. We illustrate the applicability of our framework by way of land use examples from temperate to subtropical South America, an area of rapid social and ecological change.
- by Sarah Trainor and +1
- •
- Biodiversity, Multidisciplinary, Land Use, PNAS
Aim Large trees (d.b.h. Ն 70 cm) store large amounts of biomass. Several studies suggest that large trees may be vulnerable to changing climate, potentially leading to declining forest biomass storage. Here we determine the importance of... more
Aim Large trees (d.b.h. Ն 70 cm) store large amounts of biomass. Several studies suggest that large trees may be vulnerable to changing climate, potentially leading to declining forest biomass storage. Here we determine the importance of large trees for tropical forest biomass storage and explore which intrinsic (species trait) and extrinsic (environment) variables are associated with the density of large trees and forest biomass at continental and pan-tropical scales.
- by N. Zweifel and +2
- •
- Botany, Forestry, Conservation Biology, Biology
Plant morphological and physiological traits affect the way plants tolerate environmental stresses and therefore play an important role in shaping species distribution patterns in relation to environmental gradients. Despite our growing... more
Plant morphological and physiological traits affect the way plants tolerate environmental stresses and therefore play an important role in shaping species distribution patterns in relation to environmental gradients. Despite our growing knowledge on the role of functional traits in structuring plant communities, few studies have tested their importance at large scales in the wet tropics. Here, we describe the distribution patterns of the most important West African rain forest timber species along the regional rainfall gradient and relate them to their functional traits. We found that the distribution patterns of 25 out of the 31 studied species (80%) were significantly related to mean annual rainfall. Shade tolerance and drought resistance were identified as the main strategy axes of variation. Wood density and leaf deciduousness emerged as the best predictor traits of species position along the rainfall gradient, explaining respectively 32 and 15 percent of the variation. Species traits tended to show stronger relationships with estimated optimum annual rainfall for each species than to the extreme rainfall conditions where they occur. The significant role of rainfall in shaping timber species distribution and the strong relationships between species traits and rainfall indicate that changes in climate, especially declining rainfall, could have strong effects on species composition and abundance in these tropical forests.
The intermediate disturbance hypothesis (IDH) predicts local species diversity to be maximal at an intermediate level of disturbance. Developed to explain species maintenance and diversity patterns in species-rich ecosystems such as... more
The intermediate disturbance hypothesis (IDH) predicts local species diversity to be maximal at an intermediate level of disturbance. Developed to explain species maintenance and diversity patterns in species-rich ecosystems such as tropical forests, tests of IDH in tropical forest remain scarce, small-scale and contentious. We use an unprecedented large-scale dataset (2504 one-hectare plots and 331 567 trees) to examine whether IDH explains tree diversity variation within wet, moist and dry tropical forests, and we analyse the underlying mechanism by determining responses within functional species groups. We find that disturbance explains more variation in diversity of dry than wet tropical forests. Pioneer species numbers increase with disturbance, shade-tolerant species decrease and intermediate species are indifferent. While diversity indeed peaks at intermediate disturbance levels little variation is explained outside dry forests, and disturbance is less important for species richness patterns in wet tropical rain forests than previously thought.
- by William Hawthorne and +1
- •
- Ghana, Ecology, Biodiversity, Tropical forest
Plant relative growth rate (RGR) depends on biomass allocation to leaves (leaf mass fraction, LMF), efficient construction of leaf surface area (specific leaf area, SLA) and biomass growth per unit leaf area (net assimilation rate, NAR).... more
Plant relative growth rate (RGR) depends on biomass allocation to leaves (leaf mass fraction, LMF), efficient construction of leaf surface area (specific leaf area, SLA) and biomass growth per unit leaf area (net assimilation rate, NAR). Functional groups of species may differ in any of these traits, potentially resulting in (1) differences in mean RGR of groups, and (2) differences in the traits driving RGR variation within each group. We tested these predictions by comparing deciduous and evergreen savanna trees. RGR, changes to biomass allocation and leaf morphology, and root non-structural carbohydrate reserves were evaluated for juveniles of 51 savanna species (34 deciduous, 17 evergreen) grown in a common garden experiment. It was anticipated that drivers of RGR would differ between leaf habit groups because deciduous species have to allocate carbohydrates to storage in roots to be able to flush leaves again, which directly compromises their LMF, whereas evergreen species are ...
- by Frank Van Langevelde and +1
- •
- Plant Biology, Ecology, Linear models, Trees
The occurrence and abundance of 12 canopy tree species from the moist tropical forests of West Africa have been studied in relation to a climatic gradient. We focused on environmental factors related to water availability: annual amount... more
The occurrence and abundance of 12 canopy tree species from the moist tropical forests of West Africa have been studied in relation to a climatic gradient. We focused on environmental factors related to water availability: annual amount of rainfall, the length of the dry season, and cumulative water deficit. Species occurrence and abundance data are used for 39 forest sites in Liberia and southwest Cote d'Ivoire. Species responses are modelled using a set of five increasingly complex models, ranging from a no-trend model to a skewed bell-shaped response curve.
- by Marc Parren and +1
- •
- Plant Biology, Ecology, Vegetation, Vegetation Science
Plant functional traits are the features (morphological, physiological, phenological) that represent ecological strategies and determine how plants respond to environmental factors, affect other trophic levels and influence ecosystem... more
Plant functional traits are the features (morphological, physiological, phenological) that represent ecological
strategies and determine how plants respond to environmental factors, affect other trophic levels and influence ecosystem
properties. Variation in plant functional traits, and trait syndromes, has proven useful for tackling many important ecological
questions at a range of scales, giving rise to a demand for standardised ways to measure ecologically meaningful plant traits.
This line of research has been among the most fruitful avenues for understanding ecological and evolutionary patterns and
processes. It also has the potential both to build a predictive set of local, regional and global relationships between plants and
environment and to quantify a wide range of natural and human-driven processes, including changes in biodiversity, the
impacts of species invasions, alterations in biogeochemical processes and vegetation–atmosphere interactions. The
importance of these topics dictates the urgent need for more and better data, and increases the value of standardised
protocols for quantifying trait variation of different species, in particular for traits with power to predict plant- and ecosystem level processes, and for traits that can be measured relatively easily. Updated and expanded from the widely used previous
version, this handbook retains the focus on clearly presented, widely applicable, step-by-step recipes, with a minimum of text
on theory, and not only includes updated methods for the traits previously covered, but also introduces many new protocols
for further traits. This new handbook has a better balance between whole-plant traits, leaf traits, root and stem traits and
regenerative traits, and puts particular emphasis on traits important for predicting species’ effects on key ecosystem
properties.Wehope this new handbook becomes a standard companion in local and global efforts to learn about the responses and impacts of different plant species with respect to environmental changes in the present, past and future.
strategies and determine how plants respond to environmental factors, affect other trophic levels and influence ecosystem
properties. Variation in plant functional traits, and trait syndromes, has proven useful for tackling many important ecological
questions at a range of scales, giving rise to a demand for standardised ways to measure ecologically meaningful plant traits.
This line of research has been among the most fruitful avenues for understanding ecological and evolutionary patterns and
processes. It also has the potential both to build a predictive set of local, regional and global relationships between plants and
environment and to quantify a wide range of natural and human-driven processes, including changes in biodiversity, the
impacts of species invasions, alterations in biogeochemical processes and vegetation–atmosphere interactions. The
importance of these topics dictates the urgent need for more and better data, and increases the value of standardised
protocols for quantifying trait variation of different species, in particular for traits with power to predict plant- and ecosystem level processes, and for traits that can be measured relatively easily. Updated and expanded from the widely used previous
version, this handbook retains the focus on clearly presented, widely applicable, step-by-step recipes, with a minimum of text
on theory, and not only includes updated methods for the traits previously covered, but also introduces many new protocols
for further traits. This new handbook has a better balance between whole-plant traits, leaf traits, root and stem traits and
regenerative traits, and puts particular emphasis on traits important for predicting species’ effects on key ecosystem
properties.Wehope this new handbook becomes a standard companion in local and global efforts to learn about the responses and impacts of different plant species with respect to environmental changes in the present, past and future.
Plant traits–the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs–determine how primary producers respond to environmental factors, affect other trophic levels, influence... more
Plant traits–the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs–determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database ...
- by Benjamin Blonder and +2
- •
- Global Change Biology, Global change
Drought is an important seedling mortality agent in dry and moist tropical forests, and more severe and frequent droughts are predicted in the future. The effect of drought on leaf gas exchange and seedling survival was tested in a... more
Drought is an important seedling mortality agent in dry and moist tropical forests, and more severe and frequent droughts are predicted in the future. The effect of drought on leaf gas exchange and seedling survival was tested in a dry-down experiment with four tree species from dry and moist forests in Bolivia. Seedlings were droughted and wilting stage and gas exchange were monitored. Drought led to a gradual reduction of photosynthesis and stomatal conductance over time, whereas respiration and photosynthetic water-use efficiency initially increased with drought and then declined. Seedlings gradually went through the different wilting stages, until they eventually died, but the trajectory differed for the four species. The strong relationship between wilting stage and photosynthesis means that simple field observations can provide valuable information on plant physiological performance. Three different drought strategies were identified. Dry forest species Ceiba samauma shed its leaves and survived. The moist forest species Cariniana ianeirensis postponed drought stress by having low rates of transpiration and high water-use efficiency. Dry forest Astronium urundeuva and moist forest Triplaris americana followed an opportunistic strategy; they are early successional species that can quickly grow to maturity but periodic drought can be lethal. Strikingly, dry and moist forest species did not differ clearly in their drought tolerance strategies.
Water availability is the main determinant of species' distribution in lowland tropical forests. Species' occurrence along water availability gradients depends on their ability to tolerate drought. To identify species'... more
Water availability is the main determinant of species' distribution in lowland tropical forests. Species' occurrence along water availability gradients depends on their ability to tolerate drought. To identify species' traits underlying drought-tolerance we excavated first year seedlings of 62 dry and moist forest tree species at the onset of the dry season. We evaluate how morphological seedling traits differ between forests, and whether functional groups of species can be identified based on trait relations. We also compare seedling traits along independent axes of drought and shade-tolerance to assess a hypothesized trade-off. Seedlings of dry forest species improve water foraging capacity in deep soil layers by an increased below-ground biomass allocation and by having deep roots. They minimize the risk of cavitation by making dense stems, and reduce transpiration by producing less leaf tissue. Moist forest seedlings have large leaf areas and a greater above-groun...
ABSTRACT 1. Deterministic theories predict that local communities assemble from a regional species pool based on niche differences, thus by plant functional adaptations. We tested whether functional traits can also explain patterns in... more
ABSTRACT 1. Deterministic theories predict that local communities assemble from a regional species pool based on niche differences, thus by plant functional adaptations. We tested whether functional traits can also explain patterns in species dominance among the suite of co-occurring species. 2. We predicted that along a gradient of secondary succession the main driver of species dominance changes from environmental filtering in the relatively harsh (dry and hot) early successional conditions, towards increased competitive interactions and limiting similarity in later successional conditions (when light is limited). 3.We used the Kurtosis (K) (a measure of peakedness) of the functional trait distribution of secondary forest communities in high-diversity tropical rainforest in Chiapas, Mexico. The forests ranged 1 to 25 years in age, and we used 8 functional leaf traits related to a plants’ carbon, water and heat balance. We calculated the functional trait distribution based on species dominance, where trait values were weighted by species’ relative basal area, as well as based on species presence, all species counting once. “K-ratio” was subsequently computed by dividing kurtosis based on species dominance by kurtosis based on species presence. If the K-ratio is high, the dominant species are functionally similar and we interpreted this as environmentally driven functional convergence allowing species to become dominant. If the K-ratio is small, dominant species are a functionally dissimilar subset of the species present and we interpreted this as competitively driven functional divergence allowing species to become dominant. 4. We found that in early succession dominant species represent a functionally narrow subset of species with similar traits and in late succession dominant species increasingly represent a wide subset of the species present. This trend was found for traits that reflect photosynthetic performance and light capture, and indicates increased competition for light with succession. No trend was found for traits that indicate defense against herbivory, suggesting no successional changes in herbivore pressure. 5. Synthesis. This is one of the first studies showing that drivers of species dominance change along a gradient of secondary succession. During the early successional time window we evaluated, the importance of environmental filtering as a driving force fades away rapidly, and the importance of niche partitioning for species dominance starts to emerge. This article is protected by copyright. All rights reserved.
In a comparative study of 42 rainforest tree species we examined relationships amongst wood traits, diameter growth and survival of large trees in the field, and shade tolerance and adult stature of the species.
- by Ute Sass-Klaassen and +1
- •
- Drought Stress, Biological Sciences, Wood, New