
A Morozov
Related Authors
Alexandra Coso
Georgia Institute of Technology
robin adams
Purdue University
rebecca hardin
University of Michigan
Michigan Sustainability Cases Initiative
University of Michigan
Ann F. McKenna
Arizona State University
Marie Paretti
Virginia Tech
John Gero
George Mason University
Ruth Streveler
Purdue University
Philip Cash
Northumbria University
InterestsView All (8)
Uploads
Papers by A Morozov
This paper examines differences between how novices and experts approached the same hypothetical engineering problem. First-year students (n=124) and experienced engineers (n=4) were asked to identify factors they would take into account when designing a retaining wall system for the Mississippi River. Expert data were gathered using verbal protocol analysis, in which subjects were asked to “think aloud” as they addressed the retaining wall problem, and their statements were coded and interpreted. Novice data were gathered using a written protocol in which subjects were asked to simply list the factors on paper. Qualitative data were segmented into distinct ideas, which were then coded using a coding scheme with two dimensions of problem scoping breadth: physical location and frame of reference.
We found that novices offered a greater proportion of factors from the natural and social frames of reference, versus technical and logistical frames, which indicated a rather broad approach the problem. We argue that this may reflect the novices’ relative inexperience with engineering concepts. While the four experts’ responses differed in terms of their representations through a “breadth of problem scoping” coding scheme, two of the responses echoed a characteristic top-down, breadth-first approach to design. The difference in protocols presents challenges in comparing expert and novice behavior, and methodological issues of collecting less information from a greater number of subjects versus collecting more information from fewer subjects were addressed. Because asking the experts to think aloud resulted in a rich data set, we employed narrative analysis to further investigate expert responses.
The narrative analysis of expert problem scoping behavior suggested a sophisticated approach to situating problems and solutions in context. It highlighted several particular kinds of factors that the four experts in our sample were drawn to – existing engineered solutions, alternative design solutions, costs and benefits, priorities, and history. In addition, the narrative analysis illustrated the relationships between and among an expert’s ideas, and what these relationships imply for the expert designers’ thought processes.
This paper examines differences between how novices and experts approached the same hypothetical engineering problem. First-year students (n=124) and experienced engineers (n=4) were asked to identify factors they would take into account when designing a retaining wall system for the Mississippi River. Expert data were gathered using verbal protocol analysis, in which subjects were asked to “think aloud” as they addressed the retaining wall problem, and their statements were coded and interpreted. Novice data were gathered using a written protocol in which subjects were asked to simply list the factors on paper. Qualitative data were segmented into distinct ideas, which were then coded using a coding scheme with two dimensions of problem scoping breadth: physical location and frame of reference.
We found that novices offered a greater proportion of factors from the natural and social frames of reference, versus technical and logistical frames, which indicated a rather broad approach the problem. We argue that this may reflect the novices’ relative inexperience with engineering concepts. While the four experts’ responses differed in terms of their representations through a “breadth of problem scoping” coding scheme, two of the responses echoed a characteristic top-down, breadth-first approach to design. The difference in protocols presents challenges in comparing expert and novice behavior, and methodological issues of collecting less information from a greater number of subjects versus collecting more information from fewer subjects were addressed. Because asking the experts to think aloud resulted in a rich data set, we employed narrative analysis to further investigate expert responses.
The narrative analysis of expert problem scoping behavior suggested a sophisticated approach to situating problems and solutions in context. It highlighted several particular kinds of factors that the four experts in our sample were drawn to – existing engineered solutions, alternative design solutions, costs and benefits, priorities, and history. In addition, the narrative analysis illustrated the relationships between and among an expert’s ideas, and what these relationships imply for the expert designers’ thought processes.