Performance optimisation of deep learning models using majority voting algorithm for brain tumour classification
Computers in Biology and Medicine, Aug 1, 2021
BACKGROUND Although biopsy is the gold standard for tumour grading, being invasive, this procedur... more BACKGROUND Although biopsy is the gold standard for tumour grading, being invasive, this procedure also proves fatal to the brain. Thus, non-invasive methods for brain tumour grading are urgently needed. Here, a magnetic resonance imaging (MRI)-based non-invasive brain tumour grading method has been proposed using deep learning (DL) and machine learning (ML) techniques. METHOD Four clinically applicable datasets were designed. The four datasets were trained and tested on five DL-based models (convolutional neural networks), AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50, and five ML-based models, Support Vector Machine, K-Nearest Neighbours, Naïve Bayes, Decision Tree, and Linear Discrimination using five-fold cross-validation. A majority voting (MajVot)-based ensemble algorithm has been proposed to optimise the overall classification performance of five DL and five ML-based models. RESULTS The average accuracy improvement of four datasets using the DL-based MajVot algorithm against AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50 models was 2.02%, 1.11%, 1.04%, 2.67%, and 1.65%, respectively. Further, a 10.12% improvement was seen in the average accuracy of four datasets using the DL method against ML. Furthermore, the proposed DL-based MajVot algorithm was validated on synthetic face data and improved the male versus female face image classification accuracy by 2.88%, 0.71%, 1.90%, 2.24%, and 0.35% against AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50, respectively. CONCLUSION The proposed MajVot algorithm achieved promising results for brain tumour classification and is able to utilise the combined potential of multiple models.
Uploads
Papers by Gopal Tandel