Papers by Cristian Caloian
Alzheimer's & dementia : the journal of the Alzheimer's Association, Jan 11, 2016
Identifying accurate biomarkers of cognitive decline is essential for advancing early diagnosis a... more Identifying accurate biomarkers of cognitive decline is essential for advancing early diagnosis and prevention therapies in Alzheimer's disease. The Alzheimer's disease DREAM Challenge was designed as a computational crowdsourced project to benchmark the current state-of-the-art in predicting cognitive outcomes in Alzheimer's disease based on high dimensional, publicly available genetic and structural imaging data. This meta-analysis failed to identify a meaningful predictor developed from either data modality, suggesting that alternate approaches should be considered for to prediction of cognitive performance.

The detection of somatic mutations from cancer genome sequences is key to understanding the genet... more The detection of somatic mutations from cancer genome sequences is key to understanding the genetic basis of disease progression, patient survival and response to therapy. Benchmarking is needed for tool assessment and improvement but is complicated by a lack of gold standards, by extensive resource requirements and by difficulties in sharing personal genomic information. To resolve these issues, we launched the ICGC-TCGA DREAM Somatic Mutation Calling Challenge, a crowdsourced benchmark of somatic mutation detection algorithms. Here we report the BAMSurgeon tool for simulating cancer genomes and the results of 248 analyses of three in silico tumors created with it. Different algorithms exhibit characteristic error profiles, and, intriguingly, false positives show a trinucleotide profile very similar to one found in human tumors. Although the three simulated tumors differ in sequence contamination (deviation from normal cell sequence) and in subclonality, an ensemble of pipelines outperforms the best individual pipeline in all cases. BAMSurgeon is available at https://github.com/adamewing/bamsurgeon/.

Nature Methods, Aug 31, 2014
As high-throughput sequencing continues to increase in speed and throughput, routine clinical and... more As high-throughput sequencing continues to increase in speed and throughput, routine clinical and industrial application draws closer. These 'production' settings will require enhanced quality monitoring and quality control to optimize output and reduce costs. We developed SeqControl, a framework for predicting sequencing quality and coverage using a set of 15 metrics describing overall coverage, coverage distribution, basewise coverage and basewise quality. Using whole-genome sequences of 27 prostate cancers and 26 normal references, we derived multivariate models that predict sequencing quality and depth. SeqControl robustly predicted how much sequencing was required to reach a given coverage depth (area under the curve (AUC) = 0.993), accurately classified clinically relevant formalin-fixed, paraffin-embedded samples, and made predictions from as little as one-eighth of a sequencing lane (AUC = 0.967). These techniques can be immediately incorporated into existing sequencing pipelines to monitor data quality in real time. SeqControl is available at http://labs.oicr.on.ca/Boutros-lab/software/SeqControl/.
Uploads
Papers by Cristian Caloian