Papers by Massimo Cenciarini
Are gaze stabilization deficits related to vestibular reweighting deficits during stance in patients with vestibular disorders

The objective characterization of human motion is required in a variety of fields including compe... more The objective characterization of human motion is required in a variety of fields including competitive sports, rehabilitation and the detection of motor deficits. Nowadays, typically human experts evaluate the motor behavior. These evaluations are based on their individual experience which leads to a low inter-and intra-expert reliability. Standardized tests improve on the reliability but are still prone to subjective ratings and require human expert knowledge. This paper presents a novel method to characterize the motor state of Parkinson patients using full body motion capturing data based on a combination of multiple metrics. Our approach merges various metrics with a Random Forest and uses a probabilistic formulation to compute a one-dimensional measure for the performed motion. We present an application of our approach to the problem of relating subject motion to different classes like healthy subjects and Parkinson disease patients with deep brain stimulation switched on or off. In the experimental session we show that our measure leads to high classification rates and high entropy values for real-world data. Besides, we show that our method discriminates between Parkinson's subjects (with and without stimulation) and healthy persons as good as the Unified Parkinson's Disease Rating Scale (UPDRS).
The video head impulse test predicts the ability to reweight vestibular information during stance... more The video head impulse test predicts the ability to reweight vestibular information during stance in patients with vestibular disorders
Are gaze stabilization deficits related to vestibular reweighting deficits during stance in patients with vestibular disorders

INTRODUCTION: During stance, vestibular information is used and weighted based on its reliability... more INTRODUCTION: During stance, vestibular information is used and weighted based on its reliability. Vestibular deficits affect the reliability of vestibular information and therefore affect the ability to reweight vestibular information during stance. Vestibular information during stance mainly consists of frequencies up to 5 Hz. However, vestibular-ocular reflex (VOR) tests designed to detect vestibular deficits mainly operate in restricted frequency ranges such as 0.002 - 0.004 Hz for the caloric test, 0.1 - 1 Hz for the rotational chair test and 1 - 6 Hz for the head impulse test. In this study we investigated how these three VOR tests are related to the ability to reweight vestibular information under different sensory disturbance conditions in patients with vestibular disorders. METHODS: 11 Patients (5 female) with vestibular disorders (mean ± SD age: 59.3 ± 9.9 years) were included. All patients underwent VOR examination using videonystagmography during bilateral cold caloric t...

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016
The objective characterization of human motion is required in a variety of fields including compe... more The objective characterization of human motion is required in a variety of fields including competitive sports, rehabilitation and the detection of motor deficits. Nowadays, typically human experts evaluate the motor behavior. These evaluations are based on their individual experience which leads to a low inter- and intra-expert reliability. Standardized tests improve on the reliability but are still prone to subjective ratings and require human expert knowledge. This paper presents a novel method to characterize the motor state of Parkinson patients using full body motion capturing data based on a combination of multiple metrics. Our approach merges various metrics with a Random Forest and uses a probabilistic formulation to compute a one-dimensional measure for the performed motion. We present an application of our approach to the problem of relating subject motion to different classes like healthy subjects and Parkinson disease patients with deep brain stimulation switched on or ...

Computers in Biology and Medicine, 2016
In this work we present the methodology for the development of the EMBalance diagnostic Decision ... more In this work we present the methodology for the development of the EMBalance diagnostic Decision Support System (DSS) for balance disorders. Medical data from patients with balance disorders have been analysed using data mining techniques for the development of the diagnostic DSS. The proposed methodology uses various data, ranging from demographic characteristics to clinical examination, auditory and vestibular tests, in order to provide an accurate diagnosis. The system aims to provide decision support for general practitioners (GPs) and experts in the diagnosis of balance disorders as well as to provide recommendations for the appropriate information and data to be requested at each step of the diagnostic process. Detailed results are provided for the diagnosis of 12 balance disorders, both for GPs and experts. Overall, the reported accuracy ranges from 59.3 to 89.8% for GPs and from 74.3 to 92.1% for experts.
2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 2016
In this work we present a framework for the analysis and mining of multiparametric data related t... more In this work we present a framework for the analysis and mining of multiparametric data related to balance disorders. The overall concept is to define the schema of the analysis that provides optimal results for diagnostic decision support in balance disorders. The work is part of the integrated EMBalance platform which targets the management of patients with balance disorders, from the diagnosis to treatment and evolution of the disease. The obtained results in four different balance disorders range from 76.4% to 92.1%. This work is part funded by the EC. Project EMBALANCE-A Decision Support System incorporating a validated patient-specific, multi-scale Balance Hypermodel towards early diagnostic Evaluation and efficient Management plan formulation of Balance Disorders (FP7-610454).

Journal of Neurophysiology, 2006
Humans maintain stable stance in a wide variety of environments. This robust behavior is thought ... more Humans maintain stable stance in a wide variety of environments. This robust behavior is thought to involve sensory reweighting whereby the nervous system adjusts the relative contribution of sensory sources used to control stance depending on environmental conditions. Based on prior experimental and modeling results, we developed a specific quantitative representation of a sensory reweighting hypothesis that predicts that a given reduction in the contribution from one sensory system will be accompanied by a corresponding increase in the contribution from different sensory systems. The goal of this study was to test this sensory-reweighting hypothesis using measures that quantitatively assess the relative contributions of the proprioceptive and graviceptive (vestibular) systems to postural control during eyes-closed stance in different test conditions. Medial/lateral body sway was evoked by side-to-side rotation of the support surface (SS) while simultaneously delivering a pulsed ga...
Stiffness and Damping in Postural Control Increase With Age
IEEE Transactions on Biomedical Engineering, 2010
IEEE ... International Conference on Rehabilitation Robotics : [proceedings], 2011
This paper presents an analysis of the human biomechanical considerations related to the developm... more This paper presents an analysis of the human biomechanical considerations related to the development of lower limb exoskeletons. Factors such as kinematic alignment and compatibility, joint range of motion, maximum torque, and joint bandwidth are discussed in the framework of a review of the design specifications for exoskeleton prototypes discussed in the literature. From this analysis, we discuss major gaps in the research related to the topic and how those might be filled.
2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011
Figure 1. Ankle behavior can be approximated by a linear torsional spring in the progression stag... more Figure 1. Ankle behavior can be approximated by a linear torsional spring in the progression stage of the stance phase of normal gait.
Systematic Evaluation of a Knee Exoskeleton Misalignment Compensation Mechanism Using a Robotic Dummy Leg
2023 International Conference on Rehabilitation Robotics (ICORR)
Abstract# 893, Date Wednesday, Jan 30 2002 1: 00PM-12: 00PM Session W4 Vestibular: Clinical
aro.org
#893, Date Wednesday, Jan 30 2002 1:00PM - 12:00PM Session W4 Vestibular: Clinical, Galvanic Vest... more #893, Date Wednesday, Jan 30 2002 1:00PM - 12:00PM Session W4 Vestibular: Clinical, Galvanic Vestibular Stimulation Reveals Sensory Reweighting in Human Postural Control. Massimo Cenciarini, Robert J. Peterka. ...

Frontiers in Neuroscience
Background: Classic motion abnormalities in Parkinson's disease (PD), such as tremor, bradykinesi... more Background: Classic motion abnormalities in Parkinson's disease (PD), such as tremor, bradykinesia, or rigidity, are well-covered by standard clinical assessments such as the Unified Parkinson's Disease Rating Scale (UPDRS). However, PD includes motor abnormalities beyond the symptoms and signs as measured by UPDRS, such as the lack of anticipatory adjustments or compromised movement smoothness, which are difficult to assess clinically. Moreover, PD may entail motor abnormalities not yet known. All these abnormalities are quantifiable via motion capture and may serve as biomarkers to diagnose and monitor PD. Objective: In this pilot study, we attempted to identify motion features revealing maximum contrast between healthy subjects and PD patients with deep brain stimulation (DBS) of the nucleus subthalamicus (STN) switched off and on as the first step to develop biomarkers for detecting and monitoring PD patients' motor symptoms. Methods: We performed 3D gait analysis in 7 out of 26 PD patients with DBS switched off and on, and in 25 healthy control subjects. We computed feature values for each stride, related to 22 body segments, four time derivatives, left-right mean vs. difference, and mean vs. variance across stride time. We then ranked the feature values according to their distinguishing power between PD patients and healthy subjects. Results: The foot and lower leg segments proved better in classifying motor anomalies than any other segment. Higher degrees of time derivatives were superior to lower degrees (jerk > acceleration > velocity > displacement). The averaged movements across left and right demonstrated greater distinguishing power than left-right asymmetries. The variability of motion was superior to motion's absolute values. Kuhner et al. Motion Capture in Parkinson's Disease Conclusions: This small pilot study identified the variability of a smoothness measure, i.e., jerk of the foot, as the optimal signal to separate healthy subjects' from PD patients' gait. This biomarker is invisible to clinicians' naked eye and is therefore not included in current motor assessments such as the UPDRS. We therefore recommend that more extensive investigations be conducted to identify the most powerful biomarkers to characterize motor abnormalities in PD. Future studies may challenge the composition of traditional assessments such as the UPDRS.

Frontiers in Neurology
Background: Objective assessments of Parkinson's disease (PD) patients' motor state using motion ... more Background: Objective assessments of Parkinson's disease (PD) patients' motor state using motion capture techniques are still rarely used in clinical practice, even though they may improve clinical management. One major obstacle relates to the large dimensionality of motor abnormalities in PD. We aimed to extract global motor performance measures covering different everyday motor tasks, as a function of a clinical intervention, i.e., deep brain stimulation (DBS) of the subthalamic nucleus. Methods: We followed a data-driven, machine-learning approach and propose performance measures that employ Random Forests with probability distributions. We applied this method to 14 PD patients with DBS switched-off or-on, and 26 healthy control subjects performing the Timed Up and Go Test (TUG), the Functional Reach Test (FRT), a hand coordination task, walking 10-m straight, and a 90° curve. results: For each motor task, a Random Forest identified a specific set of metrics that optimally separated PD off DBS from healthy subjects. We noted the highest accuracy (94.6%) for standing up. This corresponded to a sensitivity of 91.5% to detect a PD patient off DBS, and a specificity of 97.2% representing the rate of correctly identified healthy subjects. We then calculated performance measures based on these sets of metrics and applied those results to characterize symptom severity in different motor tasks. Task-specific symptom severity measures correlated significantly with each other and with the Unified Parkinson's Disease Rating Scale (UPDRS, part III, correlation of r 2 = 0.79). Agreement rates between different measures ranged from 79.8 to 89.3%. conclusion: The close correlation of PD patients' various motor abnormalities quantified by different, task-specific severity measures suggests that these abnormalities are only facets of the underlying one-dimensional severity of motor deficits. The identification and characterization of this underlying motor deficit may help to optimize therapeutic interventions, e.g., to "automatically" adapt DBS settings in PD patients.

Frontiers in Neurology
The vestibular system is involved in gaze stabilization and standing balance control. However, it... more The vestibular system is involved in gaze stabilization and standing balance control. However, it is unclear whether vestibular dysfunction affects both processes to a similar extent. Therefore, the objective of this study was to determine how the reliance on vestibular information during standing balance control is related to gaze stabilization deficits in patients with vestibular dysfunction. Eleven patients with vestibular dysfunction and twelve healthy subjects were included. Gaze stabilization deficits were established by spontaneous nystagmus examination, caloric test, rotational chair test, and head impulse test. Standing balance control was assessed by measuring the body sway (BS) responses to continuous support surface rotations of 0.5° and 1.0° peakto-peak while subjects had their eyes closed. A balance control model was fitted on the measured BS responses to estimate balance control parameters, including the vestibular weight, which represents the reliance on vestibular information. Using multivariate analysis of variance, balance parameters were compared between patients with vestibular dysfunction and healthy subjects. Robust regression was used to investigate correlations between gaze stabilization and the vestibular weight. Our results showed that the vestibular weight was smaller in patients with vestibular dysfunction than in healthy subjects (F = 7.67, p = 0.011). The vestibular weight during 0.5° peak-to-peak support surface rotations decreased with increasing spontaneous nystagmus eye velocity (ρ = −0.82, p < 0.001). In addition, the vestibular weight during 0.5° and 1.0° peak-to-peak support surface rotations decreased with increasing ocular response bias during rotational chair testing (ρ = −0.72, p = 0.02 and ρ = −0.67, p = 0.04, respectively). These findings suggest that the reliance on vestibular information during standing balance control decreases with the severity of vestibular dysfunction. We conclude that particular gaze stabilization tests may be used to predict the effect of vestibular dysfunction on standing balance control.
Neuroimaging of an attention demanding dual-task during dynamic postural control
Gait & Posture
Effect of Aging on Human Postural Control and the Interaction with Attention
Abstract The ability to stand upright and walk is generally taken for granted, yet control of bal... more Abstract The ability to stand upright and walk is generally taken for granted, yet control of balance utilizes many processes involving the neuromuscular and sensory systems. As we age, balance function begins to decline and can become problematic for many older adults. In particular, adults 65 years of age and older exhibit a higher incidence of falls than younger adults, and falls are a leading cause of injury in older adults, contributing to significant medical costs. Without better understanding of the impact of aging on balance ...
Diagnosis of balance disorders using decision support systems based on data mining techniques
2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE), 2015
Uploads
Papers by Massimo Cenciarini