Papers by Rossana Tazzioli
Alle origini della fisica teorica. La corrispondenza tra Augusto Righi e Tullio Levi-Civita (1091-1920)
Les mathématiciens italiens face à l’interventionnisme dans la Première Guerre mondiale
CNRS Éditions eBooks, 2013
Introduction Cette contribution concerne une période assez courte qui va du début de la Première ... more Introduction Cette contribution concerne une période assez courte qui va du début de la Première Guerre mondiale (juillet 1914) jusqu’à la déclaration de guerre de l’Italie contre l’Autriche-Hongrie en mai 1915. Pour mieux en comprendre les enjeux nous donnons quelques points de repère sur l’histoire de l’Italie après son unification nationale (1861). En 1882, l’Italie signe la Triple-Alliance avec l’Allemagne et l’Autriche-Hongrie malgré la question non résolue des « terres irrédentes », c’e..
What Is this Book About?
Springer eBooks, 2009
Between 28 and 30 September 1973, an important conference was held at the university of Grenoble ... more Between 28 and 30 September 1973, an important conference was held at the university of Grenoble (France) under the title France and Italy during World War 1. The proceedings of the conference were subsequently published by Grenoble University Press in [25]. The conference gathered important contributions about many aspects of the Franco-Italian relationship in the troubled years of the world war.
Riemann made fundamental contributions to mathematics-number theory, differential geometry, real ... more Riemann made fundamental contributions to mathematics-number theory, differential geometry, real and complex analysis, Abelian functions, differential equations, and topologyand also carried out research in physics and natural philosophy. The aim of this note is to show that his works can be interpreted as a unitary programme where mathematics, physics and natural philosophy are strictly connected with each other.
HAL (Le Centre pour la Communication Scientifique Directe), Apr 12, 2010
Cet article (en deux parties [1]) raconte comment Poincaré introduisit les fonctions qu'il baptis... more Cet article (en deux parties [1]) raconte comment Poincaré introduisit les fonctions qu'il baptisa fuchsiennes pour résoudre certaines équations différentielles. Il s'inspira pour cela des travaux de Fuchs en les associant de façon novatrice à de la géométrie non euclidienne. N connaît les équations : ces égalités qui lient des nombres et des inconnues de manière telle que l'on puisse déterminer les inconnues-dans les meilleurs des cas. Il est d'autres types d'équations-les équations différentielles-dont les inconnues ne sont plus des nombres, mais des fonctions. Et ces équations « déterminent »-toujours dans le meilleur des cas-les fonctions par l'égalité qu'elles énoncent entre des fonctions connues, la fonction cherchée, la dérivée de cette fonction, etc.
HAL (Le Centre pour la Communication Scientifique Directe), 2019
umi.dm.unibo.it/en/info-3/ umi-historical-archive /; on Italian science archives see http:// www.... more umi.dm.unibo.it/en/info-3/ umi-historical-archive /; on Italian science archives see http:// www.archividellascienza.org/en/. We would like to thank the former UMI president, Ciro Ciliberto, the current president, Piermarco Cannarsa, and the treasurer Veronica Gavagna for allowing us to consult the Archive; we are also grateful to the archivist Alida Caramagno for her useful suggestions.
Du côté des lettres: il y a cent ans, Voltera et Darboux échangent sur la Grande Guerre
HAL (Le Centre pour la Communication Scientifique Directe), 2014
HAL (Le Centre pour la Communication Scientifique Directe), 2013
Mittag-Leffler and Vito Volterra. 40 years correpondence
HAL (Le Centre pour la Communication Scientifique Directe), 2019

Se la Grande Guerra e l'evento principe del decennio 1911-1920, per l'Italia la prova gen... more Se la Grande Guerra e l'evento principe del decennio 1911-1920, per l'Italia la prova generale avviene proprio all'alba di esso, in singolare coincidenza col cinquantesimo dell'Unita, con la guerra contro l'Impero ottomano, che controllava fra l'altro Tripolitania, Cirenaica e alcune isole del Dodecanneso. E la guerra italo-turca o guerra di Libia, anche se la Libia non esisteva ancora nelle carte geografiche. All'epoca, la corsa alla spartizione del mondo era ormai conclusa. Restavano pochi territori liberi, fra cui la Libia, la cui conquista era considerata, dal governo Giolitti – in crescente difficolta per gli effetti della crisi economica internazionale del 1907-'08 – capace di superare la " stagnazione ". Nel 1911, tutti i paesi industriali avevano portato il protezionismo a un livello di semi-autarchia. Gia fin dal 1908, tutte le potenze che avrebbero partecipato all'ormai imminente conflitto mondiale per una nuova spartizione del...

Lettera Matematica Pristem, 2015
Aldo Palazzeschi, uno dei rari intellettuali italiani apertamente pacifisti nel 1915, scriveva ne... more Aldo Palazzeschi, uno dei rari intellettuali italiani apertamente pacifisti nel 1915, scriveva nel suo libro Due imperi... mancati, apparso nell'immediato dopoguerra, che "sarà bene che uno almeno lasci intravedere se pur pietosamente velato quale fu il vero quadro del nostro tempo". Le commemorazioni del centenario dall'entrata in guerra dell'Italia nel 1915 sono l'occasione per rivisitare nuovamente questo delicato periodo, che segna brutalmente l'inizio del ventesimo secolo. La Prima guerra mondiale rappresentò una frattura per tutti coloro che subirono in un modo o nell'altro questo conflitto, provocando un trauma senza precedenti. E questo è vero per tutti i Paesi toccati dalla guerra. Tuttavia il caso dell'Italia, per la sua situazione socio-economica e per la posizione sulla scena internazionale nel 1914, è molto particolare rispetto agli altri Paesi sotto numerosi aspetti. A differenza delle maggiori nazioni europee, infatti, l'Italia dichiarò la propria neutralità fin dai primi giorni del conflitto (agosto 1914). Gli Italiani-il popolo ma anche gli intellettuali-presero allora posizione di fronte alla guerra. L'entrata dell'Italia nel conflitto (maggio 1915), così come la vicenda stessa della guerra in tutta la sua durezza e drammaticità, lasciò tracce profonde nella vita di ogni italiano e traumi permanenti in chi combatté al fronte. Naturalmente, i matematici non furono estranei a questi avvenimenti che li riguardavano non solo a titolo personale ma anche in quanto appartenenti a una comunità scientifica che dovette evolvere, adattarsi e trasformare la concezione che aveva di se stessa per diventare conforme al "quadro del nostro tempo". "Quanto tempo ci vorrà ancora perché l'umanità ritrovi il suo equilibrio"? scriveva Émile Picard a Vito Volterra il 28 febbraio 1920, mentre pochi giorni dopo (il 2 marzo) un altro matematico, Luigi Bianchi, dichiarava ancora a Volterra che "ai vecchi come me non sarà dato di vedere tempi migliori!" Frasi molto dure e prive di speranza, soprattutto se confrontate all'euforia internazionalista dei primi anni del Novecento, quando lo stesso Volterra nel suo discorso ai membri della Società Fisica di Berlino nella primavera del 1914 diceva che i matematici sono "amici" tra di loro perché hanno un "amico comune", che è la "loro scienza", intendendo dire che tutti i matematici sono "amici" perché è la loro disciplina a unificarne gli obiettivi e la ricerca intellettuale.
Les communatés mathématiques au lendemain de la Grande Guerre

Integral equations between theory and practice: the cases of Italy and France to 1920
Archive for History of Exact Sciences, 2013
In 1899, Ivar Fredholm discovered how to treat an integral equation using conceptual methods from... more In 1899, Ivar Fredholm discovered how to treat an integral equation using conceptual methods from linear algebra and use these ideas to solve certain classes of boundary value problems. He formulated a theory allowing him both to unify large classes of problems and to attack several problems fruitfully. The historical literature on the theory of integral equations has concentrated largely on the unification that was afforded by Hilbert and his school, but has not throughly investigated the roots of the subject in the older theory of partial differential equations, as developed for instance by Fredholm himself but also by Volterra and Levi-Civita. By concentrating on work issuing from this older tradition, in particular on French and Italian work, the paper shows how the new theory of integral equations was enthusiastically received, especially for its fruitful applications to areas of mathematical physics such as hydrodynamics, elasticity, and heat theory.

Integral equations between theory and practice: the cases of Italy and France to 1920
Archive for History of Exact Sciences, 2013
In 1899, Ivar Fredholm discovered how to treat an integral equation using conceptual methods from... more In 1899, Ivar Fredholm discovered how to treat an integral equation using conceptual methods from linear algebra and use these ideas to solve certain classes of boundary value problems. He formulated a theory allowing him both to unify large classes of problems and to attack several problems fruitfully. The historical literature on the theory of integral equations has concentrated largely on the unification that was afforded by Hilbert and his school, but has not throughly investigated the roots of the subject in the older theory of partial differential equations, as developed for instance by Fredholm himself but also by Volterra and Levi-Civita. By concentrating on work issuing from this older tradition, in particular on French and Italian work, the paper shows how the new theory of integral equations was enthusiastically received, especially for its fruitful applications to areas of mathematical physics such as hydrodynamics, elasticity, and heat theory.
Mathematicians at war
Archimedes, 2009
Des mathématiciens et des guerres, 2013
Actes du colloque tenu à l'Institut des sciences de la communication du CNRS (ISCC) le 8 février ... more Actes du colloque tenu à l'Institut des sciences de la communication du CNRS (ISCC) le 8 février 2012.
What Is this Book About?
Archimedes, 2009
Between 28 and 30 September 1973, an important conference was held at the university of Grenoble ... more Between 28 and 30 September 1973, an important conference was held at the university of Grenoble (France) under the title France and Italy during World War 1. The proceedings of the conference were subsequently published by Grenoble University Press in [25]. The conference gathered important contributions about many aspects of the Franco-Italian relationship in the troubled years of the world war.

Historical studies about the involvement of Italian scientists—and mathematicians in particular—i... more Historical studies about the involvement of Italian scientists—and mathematicians in particular—in World War I are very few. We use several published and unpublished letters, reports, and documents in order to give a picture (although incomplete) of Italian mathematicians' role in the Great War. In the period from August 1914 to May 1915, before Italy entered the war, mathematicians partook to debates concerning intervention and expressed a full range of different opinions. During the war Italian scientists were generally involved in the war as " citizens " defending their country. Vito Volterra and Mauro Picone are two exceptions. They were strongly involved at both scientific and institutional levels: Volterra founded the Office for Inventions and Research (Ufficio Invenzioni e Ricerche, UIR) and Picone created a computing bureau for ballistics attached to the Sixth Army. Their war work was fundamental for the development of closer links among scientific research, in...
Meeting under the Integral Sign? The Oslo Congress of Mathematicians on the Eve of the Second World War by Christopher D. Hollings and Reinhard Siegmund-Schultze
The Mathematical Intelligencer, 2021
Riemann : alla ricerca della geometria della natura
Uploads
Papers by Rossana Tazzioli