Papers by Richard Whitman

Journal of Geophysical Research: Oceans, 2013
1] Association of bacteria with suspended sediment in the water column complicates the assessment... more 1] Association of bacteria with suspended sediment in the water column complicates the assessment and prediction of nearshore water quality. We examine the impact of sedimentbacteria interactions on Escherichia coli (EC) levels at beaches in southern Lake Michigan using three-dimensional EC fate and transport models with and without explicit descriptions of sediment-bacteria interactions. We simulate hydrodynamics using a nested-grid numerical model and use a semiparametric wave model to compute wave heights and net bottom shear stress. The attachment-detachment dynamics of bacteria in the water column are modeled using a linear partition coefficient. The numerical models were tested against data, collected in summer 2008, which included measurements of EC at three beaches and multiple ADCP deployments for currents and waves. Our results indicate that the model that accounts for sediment-bacteria interactions describes the observed data significantly better and that sediment, directly and indirectly, interacts with bacteria to influence their fate and transport. The improvement results from the model's ability to describe the multiple short-duration, low-intensity resuspension events at our sampling sites. A major resuspension event was noted during the simulation period but the sampling frequency during the event was inadequate to resolve the details of the peak. Using the linear isotherm model to simulate attachment-detachment dynamics of bacteria in the water column, we found that the fraction of bacteria attached to suspended sediment particles in the water column is highly variable in the vertical at offshore locations but nearly constant closer to the shore.

Water research, 2011
Efforts to improve public health protection in recreational swimming waters have focused on obtai... more Efforts to improve public health protection in recreational swimming waters have focused on obtaining real-time estimates of water quality. Current monitoring techniques rely on the time-intensive culturing of fecal indicator bacteria (FIB) from water samples, but rapidly changing FIB concentrations result in management errors that lead to the public being exposed to high FIB concentrations (type II error) or beaches being closed despite acceptable water quality (type I error). Empirical predictive models may provide a rapid solution, but their effectiveness at improving health protection has not been adequately assessed. We sought to determine if emerging monitoring approaches could effectively reduce risk of illness exposure by minimizing management errors. We examined four monitoring approaches (inactive, current protocol, a single predictive model for all beaches, and individual models for each beach) with increasing refinement at 14 Chicago beaches using historical monitoring a...

Journal of water and health, 2006
We studied the shoreward and seasonal distribution of E. coil and enterococci in sand (at the wat... more We studied the shoreward and seasonal distribution of E. coil and enterococci in sand (at the water table) at two southern Lake Michigan beaches-Dunbar and West Beach (in Indiana). Deep, backshore sand (approximately 20 m inland) was regularly sampled for 15 months during 2002-2003. E. coli counts were not significantly different in samples taken at 5-m intervals from 0-40 m inland (P = 0.25). Neither E. coli nor enterococci mean counts showed any correlation or differences between the two beaches studied. In laboratory experiments, E. coli readily grew in sand supplemented with lake plankton, suggesting that in situ E. coil growth may occur when temperature and natural organic sources are adequate. Of the 114 sand enterococci isolates tested, positive species identification was obtained for only 52 (46%), with E. faecium representing the most dominant species (92%). Genetic characterization by ribotyping revealed no distinct genotypic pattern (s) for E. coli, suggesting that the sa...

Journal of Great Lakes Research, 2014
Massive accumulations of Cladophora, a ubiquitous, filamentous green alga, have been increasingly... more Massive accumulations of Cladophora, a ubiquitous, filamentous green alga, have been increasingly reported along Great Lakes shorelines, negatively affecting beach aesthetics, recreational activities, public health and beachfront property values. Previously, the decomposition byproducts of decaying algae have not been thoroughly examined. To better understand the negative consequences and potential merit of the stranded Cladophora, a three month mesocosm study of the dynamic chemical environment of the alga was conducted using fresh samples collected from southern Lake Michigan beaches. Typical fermentation products, such as organic acids, sulfide compounds, and alcohols were detected in the oxygen-deprived algae. Short chain carboxylic acids peaked on day seven, in correspondence with the lowest pH value. Most low molecular mass carbon compounds were eventually consumed, but 4-methylphenol, indole, and 3-methylindole were detected throughout the incubation period. Natural oils were detected in fresh and decomposing algae, indicating the stable nature of these compounds. The mesocosm experiment was validated by directly sampling the fluid within decomposing Cladophora mats in the field; many of the same compounds were found. This study suggests that the problematic Cladophora accumulations may be harvested for useful byproducts, thereby reducing the odiferous and potentially harmful mats stranded along the shorelines.

Bacteriophages are viruses living in bacteria that can be used as a tool to detect fecal contamin... more Bacteriophages are viruses living in bacteria that can be used as a tool to detect fecal contamination in surface waters around the world. However, the lack of a universal host strain makes them unsuitable for tracking fecal sources. We evaluated the suitability of two newly isolated Enterococcus host strains (ENT-49 and ENT-55) capable for identifying sewage contamination in impacted waters by targeting phages specific to these hosts. Both host strains were isolated from wastewater samples and identified as E. faecium by 16S rRNA gene sequencing. Occurrence of Enterococcus phages was evaluated in sewage samples (n = 15) from five wastewater treatment plants and in fecal samples from twenty-two species of wild and domesticated animals (individual samples; n = 22). Levels of Enterococcus phages, F + coliphages, Escherichia coli and enterococci were examined from four rivers, four beaches, and three harbors. Enterococcus phages enumeration was at similar levels (Mean = 6.72 Log PFU/100 mL) to F + coliphages in all wastewater samples, but were absent from all nonhuman fecal sources tested. The phages infecting Enterococcus spp. and F + coliphages were not detected in the river samples (detection threshold b 10 PFU/100 mL), but were present in the beach and harbor samples (range = 1.83 to 2.86 Log PFU/100 mL). Slightly higher concentrations (range = 3.22 to 3.69 Log MPN/ 100 mL) of E. coli and enterococci when compared to F + coliphages and Enterococcus phages, were observed in the river, beach and harbor samples. Our findings suggest that the bacteriophages associated with these particular Enterococcus host strains offer potentially sensitive and human-source specific indicators of enteric pathogen risk.

To determine more accurately the real-time concentration of fecal indicator bacteria (FIB) in bea... more To determine more accurately the real-time concentration of fecal indicator bacteria (FIB) in beach water, predictive modeling has been applied in several locations around the Great Lakes to individual or small groups of similar beaches. Using 24 beaches in Door County, Wisconsin, we attempted to expand predictive models to multiple beaches of complex geography. We examined the importance of geographic location and independent variables and the consequential limitations for potential beach or beach group models. An analysis of Escherichia coli populations over 4 yr revealed a geographic gradient to the beaches, with mean E. coli concentrations decreasing with increasing distance from the city of Sturgeon Bay. Beaches grouped strongly by water type (lake, bay, Sturgeon Bay) and proximity to one another, followed by presence of a storm or creek outfall or amount of shoreline enclosure. Predictive models developed for beach groups commonly included wave height and cumulative 48-h rainfall but generally explained little E. coli variation (adj. R 2 = 0.19-0.36). Generally low concentrations of E. coli at the beaches infl uenced the eff ectiveness of model results presumably because of low signal-to-noise ratios and the rarity of elevated concentrations. Our results highlight the importance of the sensitivity of regressors and the need for careful methods evaluation. Despite the attractiveness of predictive models as an alternative beach monitoring approach, it is likely that FIB fl uctuations at some beaches defy simple prediction approaches. Regional, multi-beach, and individual beach predictive models should be explored alongside other techniques for improving monitoring reliability at Great Lakes beaches.

Water Research, 2011
High concentrations of Escherichia coli in mats of Cladophora in the Great Lakes have raised conc... more High concentrations of Escherichia coli in mats of Cladophora in the Great Lakes have raised concern over the continued use of this bacterium as an indicator of microbial water quality. Determining the impacts of these environmentally abundant E. coli, however, necessitates a better understanding of their ecology. In this study, the population structure of 4285 Cladophora-borne E. coli isolates, obtained over multiple three day periods from Lake Michigan Cladophora mats in 2007-2009, was examined by using DNA fingerprint analyses. In contrast to previous studies that have been done using isolates from attached Cladophora obtained over large time scales and distances, the extensive sampling done here on free-floating mats over successive days at multiple sites provided a large dataset that allowed for a detailed examination of changes in population structure over a wide range of spatial and temporal scales. While Cladophora-borne E. coli populations were highly diverse and consisted of many unique isolates, multiple clonal groups were also present and accounted for approximately 33% of all isolates examined. Patterns in population structure were also evident. At the broadest scales, E. coli populations showed some temporal clustering when examined by year, but did not show good spatial distinction among sites. E. coli population structure also showed significant patterns at much finer temporal scales. Populations were distinct on an individual mat basis at a given site, and on individual days within a single mat. Results of these studies indicate that Cladophora-borne E. coli populations consist of a mixture of stable, and possibly naturalized, strains that persist during the life of the mat, and more unique, transient strains that can change over rapid time scales. It is clear that further study of microbial processes at fine spatial and temporal scales is needed, and that caution must be taken when interpolating short term microbial dynamics from results obtained from weekly or monthly samples.

Science of The Total Environment, 2015
The reemergence of avian botulism caused by Clostridium botulinum type E has been observed across... more The reemergence of avian botulism caused by Clostridium botulinum type E has been observed across the Great Lakes in recent years. Evidence suggests an association between the nuisance algae, Cladophora spp., and C. botulinum in nearshore areas of the Great Lakes. However, the nature of the association between Cladophora and C. botulinum is not fully understood due, in part, to the complex food web interactions in this disease etiology. In this study, we extensively evaluated their association by quantitatively examining population size and serotypes of C. botulinum in algal mats collected from wide geographic areas in lakes Michigan, Ontario, and Erie in 2011-2012 and comparing them with frequencies in other matrices such as sand and water. A high prevalence (96%) of C. botulinum type E was observed in Cladophora mats collected from shorelines of the Great Lakes in 2012. Among the algae samples containing detectable C. botulinum, the population size of C. Botulinum type E was 10(0)-10(4)MPN/g dried algae, which was much greater (up to 10(3) fold) than that found in sand or the water column, indicating that Cladophora mats are sources of this pathogen. Mouse toxinantitoxin bioassays confirmed that the putative C. botulinum belonged to the type E serotype. Steam treatment was effective in reducing or eliminating C. botulinum type E viable cells in Cladophora mats, thereby breaking the potential transmission route of toxin up to the food chain. Consequently, our data suggest that steam treatment incorporated with a beach cleaning machine may be an effective treatment of Cladophora-borne C. botulinum and may reduce bird mortality and human health risks.

Journal of Great Lakes Research, 2014
ABSTRACT Jeorse Park Beach, on southern Lake Michigan, experiences frequent closures due to high ... more ABSTRACT Jeorse Park Beach, on southern Lake Michigan, experiences frequent closures due to high Escherichia coli (E. coli) levels since regular monitoring was implemented in 2005. During the summer of 2010, contaminant source tracking techniques, such as the conventional microbial and physical surveys and hydrodynamic models, were used to determine the reasons for poor water quality at Jeorse Park. Fecal indicator bacteria (E. coli, enterococci) were high throughout the season, with densities ranging from 12–2419 (culturable E. coli) and 1–2550 and < 1–5831 (culturable and qPCR enterococci, respectively). Genetic markers for human (Bacteroides HF183) and gull (Catellicoccus marimammalium) fecal contamination were found in 15% and 37% of the samples indicating multiple sources contributing to poor water quality. Nesting colonies of double-crested cormorants (Phalacrocorax auritus) have steadily increased since 2005, coinciding with high E. coli levels. A hydrodynamic model indicated that limited circulation allows bacteria entering the embayed area to be retained in nearshore areas; and bacterial resuspension from sand and stranded beach wrack during storm events compounds the problem. The integration of hydrodynamics, expanded use of chemical and biological markers, as well as more complex statistical multivariate techniques can improve microbial source tracking, informing management actions to improve recreational water quality. Alterations to embayed structures to improve circulation and reduce nuisance algae as well as growing native plants to retain sand to improve beach morphometry are among some of the restoration strategies under consideration in ongoing multi-agency collaborations.

Water Science & Technology, 2010
Cladophora in the Great Lakes grows rapidly during the warm summer months, detaches, and becomes ... more Cladophora in the Great Lakes grows rapidly during the warm summer months, detaches, and becomes free-floating mats as a result of environmental conditions, eventually becoming stranded on recreational beaches. Cladophora provides protection and nutrients, which allow enteric bacteria such as Escherichia coli, enterococci, Shigella, Campylobacter, and Salmonella to persist and potentially regrow in the presence of the algae. As a result of wind and wave action, these microorganisms can detach and be released to surrounding waters and can influence water quality. Enteric bacterial pathogens have been detected in Cladophora mats; E. coli and enterococci may populate to become part of the naturalized microbiota in Cladophora; the high densities of these bacteria may affect water quality, resulting in unnecessary beach closures. The continued use of traditional fecal indicators at beaches with Cladophora presence is inadequate at accurately predicting the presence of fecal contamination. This paper offers a substantial review of available literature to improve the knowledge of Cladophora impacts on water quality, recreational water monitoring, fecal indicator bacteria and microorganisms, and public health and policy.
Water Research, 2007
Fluorophore-enhanced rep-PCR Indicator bacteria E. coli population structure Recreational water q... more Fluorophore-enhanced rep-PCR Indicator bacteria E. coli population structure Recreational water quality a b s t r a c t
Uploads
Papers by Richard Whitman