
Salvatore Barba
Salvatore BARBA is Full Professor at the University of Salerno in disciplinary area “Architectural Drawings” and Contract Professor at the Faculty of Architecture in Matera of the University of Basilicata. In 2006, he achieves a Ph.D. in Structural Engineering and Urban Restoration at University of Salerno with the doctoral dissertation on digital technologies for distance surveys. From 2007 to 2013, he was Contract Professor at Polytechnic of Milan.
He is the coordinator of several international research projects: “Digital and physical mock-up for the representation of a city and the visual impact assessment”, funded by the Campania Region, 2007-17; “Laboratory of drawing and structural analysis” with the Ministry of Education, University and Research, 2010-12; “Low-cost 3D applied to works of art of Chillida and Oteiza”, with Spanish National Program, 2012-15; “Laboratory of survey in the archaeological area of Paestum”, with the Archaeological Superintendence of Campania, 2011-15; “Great Pompeii project”, with the Ministry of Cultural Heritage, 2015-16; “A spatial and social investigation at the Moxomatsi village, Mpumalanga”, funded by Italy-South Africa joint Research Project, 2018-20.
He has participated as invited speaker in various conventions held in different foreign countries, with several published articles, establishing scientific collaboration with the teachers of the disciplines of representation of the Faculty of Engineering and Architecture which are part of the UID, such as the EGA, EGRAFIA, APEGA, ABEG, ISGG, INGEGRAF, SIGRADI, ISPRS and CIPA.
He is author of over one hundred and twenty scientific publications in papers on national and international journals, proceeding and e-books. His papers 3D DIGITIZATION AND MAPPING OF HERITAGE MONUMENTS AND COMPARISON WITH HISTORICAL DRAWINGS and QUALITY ASSESSMENT OF UAV PHOTOGRAMMETRIC ARCHAEOLOGICAL SURVEY won the Best Paper in the CIPA 2013 and 2019, under the auspices of ICOMOS.
He is the coordinator of several international research projects: “Digital and physical mock-up for the representation of a city and the visual impact assessment”, funded by the Campania Region, 2007-17; “Laboratory of drawing and structural analysis” with the Ministry of Education, University and Research, 2010-12; “Low-cost 3D applied to works of art of Chillida and Oteiza”, with Spanish National Program, 2012-15; “Laboratory of survey in the archaeological area of Paestum”, with the Archaeological Superintendence of Campania, 2011-15; “Great Pompeii project”, with the Ministry of Cultural Heritage, 2015-16; “A spatial and social investigation at the Moxomatsi village, Mpumalanga”, funded by Italy-South Africa joint Research Project, 2018-20.
He has participated as invited speaker in various conventions held in different foreign countries, with several published articles, establishing scientific collaboration with the teachers of the disciplines of representation of the Faculty of Engineering and Architecture which are part of the UID, such as the EGA, EGRAFIA, APEGA, ABEG, ISGG, INGEGRAF, SIGRADI, ISPRS and CIPA.
He is author of over one hundred and twenty scientific publications in papers on national and international journals, proceeding and e-books. His papers 3D DIGITIZATION AND MAPPING OF HERITAGE MONUMENTS AND COMPARISON WITH HISTORICAL DRAWINGS and QUALITY ASSESSMENT OF UAV PHOTOGRAMMETRIC ARCHAEOLOGICAL SURVEY won the Best Paper in the CIPA 2013 and 2019, under the auspices of ICOMOS.
less
Related Authors
James Elkins
School of the Art Institute of Chicago
Elif SERTEL
Istanbul Technical University
Juan Antonio Quirós Castillo
University of the Basque Country, Euskal Herriko Unibertsitatea
Helen Goodchild
University of York
Dan Hicks
University of Oxford
Maurizio Forte
Duke University
Orietta Lanzarini
Università degli Studi di Udine / University of Udine
Marta Diaz-Guardamino
Durham University
Armando Marques-Guedes
UNL - New University of Lisbon
Stefano R L Campana
University of Siena / Università di Siena
InterestsView All (9)
Uploads
Papers by Salvatore Barba
The most complex phase of SfM photogrammetry is to take photos: anyway, in the work we wanted to evaluate photographs taken by non-professionals and thus to analyse the presence of gaps, aberrations, etc. Likewise, to better consider the economy and simplicity of SfM photogrammetry, we worked with consumer software (a possible development would be the use of other free software) and cameras with different quality lenses. The deviations shown in the article - many inadmissible - are referred to a small architectural element and do not allow generalization of the results in the case of a large construction: where, on the other hand, the survey would be carried out only by professionals. In conclusion, it is possible to observe that the use by non-professionals can bring low quality results that, although, they can be used for consumption, nothing to do with professional, scientific surveys, where the operator handles many more complex factors that will guarantee the quality, rigor and fidelity of the models obtained. All this forces us to emphasize the contribution of engineers and/or architects, also in the use of automated resources. Finally, we can argue that we do not do survey with SfM photogrammetry, which is an instrument, but with the head, with the brain, with the mind.
El Monumento a la Tolerancia es una emblemática escultura realizada por Eduardo Chillida, un perfecto ejemplo para la documentación gráfica de objetos con texturas uniformes, colores mate y con formas simples mediante diversas herramientas fotogramétricas, así como mediante el uso de diferentes aplicaciones en la fase de postproceso. Los datos de partida proceden de fotos tomadas sin una planificación previa, por lo que no se ha contemplado la colocación de ningún tipo de dianas. Con el objeto de poner a prueba los resultados se han llevado a cabo diferentes tipos de análisis. El primero se ha realizado analizando los resultados obtenidos con diferente software pero usando la misma instrumentación. El segundo ha sido la comparación del los modelos obtenidos con diferentes herramientas pero elaborados con el mismo software. Finalmente se ha llevado a cabo una validación del modelo fotogramétrico con el modelo obtenido con escáner láser. Todos los resultados se presentan y discuten para validar las herramientas y aplicaciones empleadas.
Como se sabe la fase más compleja de la fotogrametría SfM es la toma de las fotografías, sin embargo, en el trabajo se quiso expresamente evaluar fotografías tomadas por no profesionales y así evaluar las presencias de huecos, aberraciones, etc. Así mismo, para aprovechar la posible economía y sencillez de la fotogrametría SfM, se trabajó con softwares de consumo (un desarrollo posible sería utilizar otros softwares libres también) y cámaras con objetivos de distintas calidades. En este sentido, hemos de hacer algunas consideraciones al respecto: por ejemplo, las desviaciones que se muestran en el artículo – muchas no admisibles – se refieren a un elemento arquitectónico pequeño y no permiten generalizar los resultados en el caso de una gran construcción (donde, por otro lado, el levantamiento debería llevarse a cabo sólo por profesionales). Como conclusión, se observa que el uso por no profesionales puede traer consigo resultados de baja calidad que, aunque puedan ser usados para el consumo, nada a que ver con los levantamientos profesionales, científicos, donde el operador maneja muchos más factores, todos ellos complejos, pero que garantizan la calidad, rigor y fidelidad de los modelos obtenidos. Todo esto nos obliga a enfatizar el aporte de ingenieros y/o arquitectos, también en con recursos automatizados. Para finalizar podemos argumentar que hacemos el levantamiento no con la fotogrametría SfM, que es un instrumento, sino con la cabeza, con el cerebro, con la mente.
Durante el año 2017, con motivo de la gran sequía que se padeció en estas comarcas, el agua del embalse descendió excepcionalmente de manera que ya a mediados de julio se descubrió el pretil del puente y la parte central de su tablero. Como quiera que las lluvias fueron escasas durante el verano y el mes de septiembre continuó sin caer una gota de lluvia, el nivel del embalse descendió excepcionalmente e, incluso, las aguas del Riaza dejaron de fluir, de manera que a primeros del octubre se podía contemplar la estructura completa del puente fuera de las aguas y ningún río ni curso de agua circulaba bajo sus arcos. En tal circunstancia, la ocasión era especialmente propicia para realizar un levantamiento de emergencia que permitiera tener un registro gráfico del puente antes de que las aguas volvieran a subir, pues no se sabía si volverían a bajar hasta esos niveles, ni si el puente estaría íntegro cuando ese hecho sucediese.
El relevamiento objetivo -dibujos, fotogrametrías, mapas, etc.- se construye con datos cuantitativos del espacio y de los objetos en cuestión, es decir, sus características naturales y concretas; es el proceso de registro de lo que está presente en términos mensurables, razonables y verificables. Hoy en día, los avances en la tecnología han evolucionado con respecto a las técnicas y herramientas para el relevamiento y procesamiento de datos, haciendo surgir lo que se conoce como relevamiento digital.
Since the first moment of the design process, that of the experience of the natural and original state space, there are different recording modes that respond to subjective and objective surveys. The subjective survey (subjective mapping), aims to register all those things that do not show specifically, but make the object: the atmosphere of the place. They are expressions of personal and spiritual nature that creates the experience of aura. The registration of this type of survey differs fundamentally from the interpreters of space and things, because it is a process that takes place inside the subject and is influenced by the way we see and experience the world.
The objective survey -drawings, photogrammetries, maps, etc. is constructed with quantitative data from the space and the objects in question, their natural and specific characteristics; is the registration process which is present in measurable, reasonable and verifiable terms. Today, advances in technology have evolved with respect to the tools and techniques for gathering and processing data, giving rise to what is known as digital survey.
The study has began with an introduction to sensors, addressing the underlying characteristics of the technology available, the scope and the limits of these applications. We have focused particularly on the "structured light", as the acquisition will be completed through three-dimensional scanners: DAVID and the ARTEC MH.
The first is a low-cost sensor, a basic webcam and a linear laser pointer, red coloured, that leads to acquisition of three-dimensional strips. The other one is a hand scanner; even in this case we will explain how to represent a 3D model, with a pipeline that provides data export from the "proprietary" to a "reverse engineering" software. Typically, these are the common steps to the two approaches that have been performed in WRAP format: point sampling, manual and global registration, repair normals, surface editing and texture projection. In fact, after a first and common data processing was done with the use of a software supplied with the equipment, the proto-models thus obtained were treated in Geomagic Studio, which was also chosen to allow the homogenization and standardization of data in order to make a more objective comparison.
It is commonplace to observe that the editing of the digital mock-up obtained with the DAVID – which had not yet been upgraded to the 3.5 release at the time of this study - is substantially different. In the ARTEC digital mock-up for example, it shows the ability to select the individual frames, already polygonal and geo-referenced at the time of capture; however, it is not possible to make an automated texturization differently from the low-cost environment which allows to produce a good graphics’ definition. Once the final 3D models were obtained, we have proceeded to do a geometric and graphic comparison of the results. Therefore, in order to provide an accuracy requirement and an assessment for the 3D reconstruction we have taken into account the following benchmarks: cost, captured points, noise (local and global), shadows and holes, operability, degree of definition, quality and accuracy.
Subsequently, these studies carried out in an empirical way on the virtual reconstructions, a 3D documentation was codified with a procedural method endorsing the use of terrestrial sensors for the documentation of antlers. The results thus pursued were compared with the standards set by the current provisions (see "Manual de medición" of Government of Andalusia-Spain); to date, in fact, the identification is based on data such as length, volume, colour, texture, openness, tips, structure, etc. Data, which is currently only appreciated with traditional instruments, such as tape measure, would be well represented by a process of virtual reconstruction and cataloguing.
The most complex phase of SfM photogrammetry is to take photos: anyway, in the work we wanted to evaluate photographs taken by non-professionals and thus to analyse the presence of gaps, aberrations, etc. Likewise, to better consider the economy and simplicity of SfM photogrammetry, we worked with consumer software (a possible development would be the use of other free software) and cameras with different quality lenses. The deviations shown in the article - many inadmissible - are referred to a small architectural element and do not allow generalization of the results in the case of a large construction: where, on the other hand, the survey would be carried out only by professionals. In conclusion, it is possible to observe that the use by non-professionals can bring low quality results that, although, they can be used for consumption, nothing to do with professional, scientific surveys, where the operator handles many more complex factors that will guarantee the quality, rigor and fidelity of the models obtained. All this forces us to emphasize the contribution of engineers and/or architects, also in the use of automated resources. Finally, we can argue that we do not do survey with SfM photogrammetry, which is an instrument, but with the head, with the brain, with the mind.
El Monumento a la Tolerancia es una emblemática escultura realizada por Eduardo Chillida, un perfecto ejemplo para la documentación gráfica de objetos con texturas uniformes, colores mate y con formas simples mediante diversas herramientas fotogramétricas, así como mediante el uso de diferentes aplicaciones en la fase de postproceso. Los datos de partida proceden de fotos tomadas sin una planificación previa, por lo que no se ha contemplado la colocación de ningún tipo de dianas. Con el objeto de poner a prueba los resultados se han llevado a cabo diferentes tipos de análisis. El primero se ha realizado analizando los resultados obtenidos con diferente software pero usando la misma instrumentación. El segundo ha sido la comparación del los modelos obtenidos con diferentes herramientas pero elaborados con el mismo software. Finalmente se ha llevado a cabo una validación del modelo fotogramétrico con el modelo obtenido con escáner láser. Todos los resultados se presentan y discuten para validar las herramientas y aplicaciones empleadas.
Como se sabe la fase más compleja de la fotogrametría SfM es la toma de las fotografías, sin embargo, en el trabajo se quiso expresamente evaluar fotografías tomadas por no profesionales y así evaluar las presencias de huecos, aberraciones, etc. Así mismo, para aprovechar la posible economía y sencillez de la fotogrametría SfM, se trabajó con softwares de consumo (un desarrollo posible sería utilizar otros softwares libres también) y cámaras con objetivos de distintas calidades. En este sentido, hemos de hacer algunas consideraciones al respecto: por ejemplo, las desviaciones que se muestran en el artículo – muchas no admisibles – se refieren a un elemento arquitectónico pequeño y no permiten generalizar los resultados en el caso de una gran construcción (donde, por otro lado, el levantamiento debería llevarse a cabo sólo por profesionales). Como conclusión, se observa que el uso por no profesionales puede traer consigo resultados de baja calidad que, aunque puedan ser usados para el consumo, nada a que ver con los levantamientos profesionales, científicos, donde el operador maneja muchos más factores, todos ellos complejos, pero que garantizan la calidad, rigor y fidelidad de los modelos obtenidos. Todo esto nos obliga a enfatizar el aporte de ingenieros y/o arquitectos, también en con recursos automatizados. Para finalizar podemos argumentar que hacemos el levantamiento no con la fotogrametría SfM, que es un instrumento, sino con la cabeza, con el cerebro, con la mente.
Durante el año 2017, con motivo de la gran sequía que se padeció en estas comarcas, el agua del embalse descendió excepcionalmente de manera que ya a mediados de julio se descubrió el pretil del puente y la parte central de su tablero. Como quiera que las lluvias fueron escasas durante el verano y el mes de septiembre continuó sin caer una gota de lluvia, el nivel del embalse descendió excepcionalmente e, incluso, las aguas del Riaza dejaron de fluir, de manera que a primeros del octubre se podía contemplar la estructura completa del puente fuera de las aguas y ningún río ni curso de agua circulaba bajo sus arcos. En tal circunstancia, la ocasión era especialmente propicia para realizar un levantamiento de emergencia que permitiera tener un registro gráfico del puente antes de que las aguas volvieran a subir, pues no se sabía si volverían a bajar hasta esos niveles, ni si el puente estaría íntegro cuando ese hecho sucediese.
El relevamiento objetivo -dibujos, fotogrametrías, mapas, etc.- se construye con datos cuantitativos del espacio y de los objetos en cuestión, es decir, sus características naturales y concretas; es el proceso de registro de lo que está presente en términos mensurables, razonables y verificables. Hoy en día, los avances en la tecnología han evolucionado con respecto a las técnicas y herramientas para el relevamiento y procesamiento de datos, haciendo surgir lo que se conoce como relevamiento digital.
Since the first moment of the design process, that of the experience of the natural and original state space, there are different recording modes that respond to subjective and objective surveys. The subjective survey (subjective mapping), aims to register all those things that do not show specifically, but make the object: the atmosphere of the place. They are expressions of personal and spiritual nature that creates the experience of aura. The registration of this type of survey differs fundamentally from the interpreters of space and things, because it is a process that takes place inside the subject and is influenced by the way we see and experience the world.
The objective survey -drawings, photogrammetries, maps, etc. is constructed with quantitative data from the space and the objects in question, their natural and specific characteristics; is the registration process which is present in measurable, reasonable and verifiable terms. Today, advances in technology have evolved with respect to the tools and techniques for gathering and processing data, giving rise to what is known as digital survey.
The study has began with an introduction to sensors, addressing the underlying characteristics of the technology available, the scope and the limits of these applications. We have focused particularly on the "structured light", as the acquisition will be completed through three-dimensional scanners: DAVID and the ARTEC MH.
The first is a low-cost sensor, a basic webcam and a linear laser pointer, red coloured, that leads to acquisition of three-dimensional strips. The other one is a hand scanner; even in this case we will explain how to represent a 3D model, with a pipeline that provides data export from the "proprietary" to a "reverse engineering" software. Typically, these are the common steps to the two approaches that have been performed in WRAP format: point sampling, manual and global registration, repair normals, surface editing and texture projection. In fact, after a first and common data processing was done with the use of a software supplied with the equipment, the proto-models thus obtained were treated in Geomagic Studio, which was also chosen to allow the homogenization and standardization of data in order to make a more objective comparison.
It is commonplace to observe that the editing of the digital mock-up obtained with the DAVID – which had not yet been upgraded to the 3.5 release at the time of this study - is substantially different. In the ARTEC digital mock-up for example, it shows the ability to select the individual frames, already polygonal and geo-referenced at the time of capture; however, it is not possible to make an automated texturization differently from the low-cost environment which allows to produce a good graphics’ definition. Once the final 3D models were obtained, we have proceeded to do a geometric and graphic comparison of the results. Therefore, in order to provide an accuracy requirement and an assessment for the 3D reconstruction we have taken into account the following benchmarks: cost, captured points, noise (local and global), shadows and holes, operability, degree of definition, quality and accuracy.
Subsequently, these studies carried out in an empirical way on the virtual reconstructions, a 3D documentation was codified with a procedural method endorsing the use of terrestrial sensors for the documentation of antlers. The results thus pursued were compared with the standards set by the current provisions (see "Manual de medición" of Government of Andalusia-Spain); to date, in fact, the identification is based on data such as length, volume, colour, texture, openness, tips, structure, etc. Data, which is currently only appreciated with traditional instruments, such as tape measure, would be well represented by a process of virtual reconstruction and cataloguing.
Advance Information for UK, Ireland, Europe Order information for UK, Ireland, Europe - ISBN 978-1-911339-47-2
Publication co-funded by the University of Salerno, the University of Pavia and the Italian Ministry of Foreign Affairs and International Cooperation.
Il rilevamento delle pitture parietali presenti sulle superfici della Villa è stato condotto alla luce di due distinte finalità. In primo luogo, quella di acquisire e restituire il contesto in cui si inseriscono le stesse opere pittoriche. La seconda finalità, invece, con cui sono state progettate le acquisizioni fotografiche è stata quella di ottenere restituzioni con il maggiore dettaglio geometrico – non limitandoci alle sole aree delle superfici dipinte – e accuratezza grafico-cromatica, sviluppando, quindi, reto-proiezioni piane per restituire orto-immagini e documentare tutte le informazioni necessarie agli studi geometrici e prospettici. In particolare, l’attenzione si è poi focalizzata sulle problematiche connesse al rilievo di paramenti piani nel caso di sfavorevoli condizioni di presa, verificando la possibilità di garantire la correttezze geometrica delle relative restituzioni ortografiche.
Le acquisizioni fotografiche sono state eseguite con l’ausilio di una non recentissima “GoPro Hero 3 Black” con lente dell’ottica in vetro asferica ultra-nitida, apertura massima di ƒ/2,8 a 6 elementi, angolo ultra-wide e una risoluzione massima di 12 Megapixel. Il rilievo di appoggio per le necessarie informazioni geometriche è stato portato a termine, invece, con strumentazione topografica per stimare un valore del grado di attendibilità della forma e delle dimensioni. Quindi, selezionando alcuni fra i punti topografici così acquisiti, più significativi per distribuzione, visibilità e caratterizzazione per la parete in esame, sono stati valutati – diagrammandoli opportunamente – gli errori medi secondo diversi approcci. Lo studio è stato poi esteso a diversi pacchetti software (Agisoft PhotoScan 1.1.6, Pix4dMapper 1.4.46 e Recap 360 Photo di Autodesk) in modo da introdurre, per completezza, un’ulteriore variabile, quest’ultima associata all’algoritmo di image-based modelling.
In tal modo l’area archeologica di Paestum si è trasformata in un vero e proprio laboratorio a cielo aperto, rilevando e restituendo con innovativi sistemi di presa laser scanner e fotogrammetrici le rovine dei templi greci, realizzando panoramiche d’insieme, scansioni di dettaglio e confronti geometrici.
Durante le operazioni di rilevamento sono state previste applicazioni di differenti tecnologie di misurazione, con lo scopo di sviluppare successivamente una procedura di integrazione e gestione del flusso di dati per rispondere a differenti necessità di dettaglio e finalità di utilizzo. Allo scopo sono stati utilizzati tanto laser scanner con principi di funzionamento a tempo di volo (nello specifico l’ILIRIS-36D della Optech) che hanno portate di centinaia di metri e permettono un inquadramento generale del territorio, che laser a differenza di fase (come l’IMAGER della Z+F) caratterizzati da portate inferiori ma accuratezza ben maggiore.
Il gruppo di rilievo dell’Università di Salerno si è avvalso, inoltre, della collaborazione scientifica di imprese, centri di ricerca ed università straniere, con cui sono state condivise strumentazioni ed esperienze di campo. Nello specifico, l’unità 3D Optical Metrology – diretta da Fabio Remondino – della Fondazione Bruno Kessler, che ha messo a disposizione lo scanner HDS7000 della Leica, ha curato direttamente l’acquisizione tridimensionale del tempio di Nettuno. Con la 3D TARGET, invece, si sono testate le innovative potenzialità dello Z+F IMAGER 5010, caratterizzato da maggiori portate e velocità di acquisizione (più di un milione di punti al secondo), che nell’economia di un rilievo permette di ridurre i tempi di esecuzione in situ. Infine, con il Laboratorio di Fotogrammetria LFA-DAVAP della Universidad de Valladolid è stato portato a termine un rilievo aereo sperimentale dell’intera superficie degli scavi utilizzando un “Microdones md4-1000”.
L’impiego delle più avanzate tecniche di rilievo e prospezione è stato in ogni caso, preceduto da un’indagine sistematica relativa al territorio di Poseidonia-Paestum, caratterizzato da diversificate e pluristratificate vicende naturali ed antropiche: tutte le operazioni sono state appoggiate a rilievi topografici e GPS.
Uno degli obiettivi finali sarà quello di definire una metodologia integrata che porti alla codifica di nuove linee guida per la catalogazione del patrimonio culturale, così da disporre di una documentazione infografica efficace per definire una successiva messa in sicurezza, eventualmente con l’ausilio di moderne tecniche di visualizzazione tridimensionale e di realtà virtuale.
Affrontare la discussione di applicazioni consolidate di fotogrammetria non costituisce in sé un’attività necessariamente innovativa. Meritano, tuttavia, un costante approccio critico le originali implementazioni offerte non solamente dall’evoluzione tecnologica degli strumenti di acquisizione, ma anche dalle sfide poste a noi rilevatori e più in generale alla teoria delle misure. Le nuove opportunità di descrivere e rappresentare la realtà sono prevalentemente indirizzate al costruito storico e al paesaggio, con riferimento a ordini di grandezza e scale di restituzione conseguenti. Risulta, invece, ancora poco affrontata la codifica e la formalizzazione di pratiche di rilievo per oggetti di piccole dimensioni, con accuratezza e precisione necessariamente più elevate, anche nel caso di ricorso a strumentazioni “image-camera” piuttosto che range-camera. A tale proposito si presenta il caso studio relativo alla documentazione fotogrammetrica di una lamina orfica, particolarmente cogente al fine di affrontare due problematiche al contempo: quella dimensionale e quella delle superfici riflettenti (come l’oro, con cui l’oggetto è realizzato). L’acquisizione, pertanto, è stata condotta secondo due paradigmi: mediante un sistema originario “macro”, con ottiche fotografiche dedicate, in condizioni di luce artificiale ottenute sviluppando una specifica tecnica di illuminazione (la Ring Reflection Lighting-RRL), e attraverso un sistema ‘micro’, un microscopio digitale con luce polarizzata. I risultati delle sperimentazioni sono qui confrontati al fine di annodare le tessere di questa misterica laminetta nell’ambito del Progetto Visualizing Innovative and Social Artworks della Regione Calabria.
scientific-disciplinary sector DRAWING. The scientific activity, conducted in relationship with didactics, is principally articulated in four thematics:
- the buildings and landscape survey, for a deeper knowledge of the surrounding reality, conducted with direct and indirect traditional procedures, and with particular interest for the procedures of architectural photogrammetry and data acquisition by laser scanner;
- the elaboration of architectural digital models and the drawing of constructive elements, what system of ideation, verification and communication of the projected space and built;
- the representation of the territory, of the territorial infrastructures, as well as of urban and territorial complexes phenomena, also with the use of GIS;
- the three-dimensional representation of the architectural space, in the different epochs, analyzed in terms of morphology and geometrical characteristics.
All of this finds, inevitably, as the founding premise, the study and the teaching of the descriptive geometry, that it becomes the presupposition for a correct knowledge and representation of the building elements as well as those that characterize the territory and the environment.
In this work, a original step of a comparative nature in the digitization of mechanical parts is reported using the mentioned technique, photogrammetry Structure From Motion (SFM), procedure framed in terms of low cost, since free software has been used to obtain the digital models.
The paper describes, from two specific morphology parts, the results obtained in terms of surveying and processing times and the levels of accuracy achieved.
A partir de la documentación gráfica que se ofrece en esta comunicación, ha sido posible analizar y determinar la probable morfología original de una estructura mudéjar (s. XIII) oculta bajo revocos de varias épocas y coronada por un campanario dieciochesco ajeno a la concepción original de la torre.
Los distintos avatares históricos han hecho del lugar un espacio destinado a usos cambiantes a lo largo de los siglos: desde puesto de vigilancia y ámbito de refugio en tiempos de conflicto bélico, hasta la mera función de campanario en tiempos de paz.
El estudio pormenorizado de su traza original y la definición de la secuencia de sus modificaciones y reparaciones nos han posibilitado reconstruir la historia, no solo de la arquitectura, sino de los modos de ocuparla, reutilizarla y vivirla a través del tiempo.
Es un edificio que, a pesar de su escala, ha interesado muy poco a los historiadores y estudiosos. Tan sólo se cita desde un punto de vista histórico en una reseña del pueblo de Lomoviejo , faltando el estudio de la parte medieval y de la compleja evolución del edificio hasta su forma actual. Por todo ello, uno de los propósitos de esta comunicación es suministrar una planimetría del edificio que promueva su conocimiento y puesta en valor.
Los dos templos levantan ábsides de ladrillo con tambores de arquerías ciegas y torres cuadrangulares con espacios interiores abovedados. De la torre de San Juan y su compleja distribución interior trata esta comunicación.
strutture regolari, linee, curve, geometrie, simmetrie, ecc., da sfruttare per creare composizioni pulite e ordinate.
intrico di archi, fessure, ritagli, luci ed ombre, a preludio di una Chiesa che, questi stessi elementi, finisce per abbracciarli tutti.