
Stavros Vassos
I am passionate about Artificial Intelligence (AI) as an interface to the modern computing world. I work in a variety of scenarios related to Interaction Design, Internet of Things, Videogames, and Chatbots! I am excited about messaging/chat as an intuitive conversational interface. Also, I am a founder of Helvia.io that designs and develops AI solutions.
less
Related Authors
Giuliano Gaia
IULM University
Ann Borda
University of Melbourne
Pietro Cuomo
Università Cattolica del Sacro Cuore (Catholic University of the Sacred Heart)
Sierra McKinney
University of York
Sara Perry
Museum of London Archaeology
Angeliki Tzouganatou
University of Hamburg
Maria Roussou
National and Kapodistrian University of Athens
Bruno Araujo
INESC-ID
Leonardo de Araújo
Universität Bremen
InterestsView All (10)
Uploads
Papers by Stavros Vassos
First, we investigate the conjecture by Lin and Reiter that a practical first-order definition of progression is not appropriate for the general case. We show that Lin and Reiter were indeed correct in their intuitions by providing a proof for the conjecture, thus resolving the open question about the first-order definability of progression and justifying the need for a second-order definition.
Then we proceed to identify three cases where it is possible to obtain a first-order progression with the desired properties: i) we extend earlier work by Lin and Reiter and present a case where we restrict our attention to a practical class of queries that may only quantify over situations in a limited way; ii) we revisit the local-effect assumption of Liu and Levesque that requires that the effects of an action are fixed by the arguments of the action and show that in this case a first-order progression is suitable; iii) we investigate a way that the local-effect assumption can be relaxed and show that when the initial knowledge base is a database of possible closures and the effects of the actions are range-restricted then a first-order progression is also suitable under a just-in-time assumption.
Finally, we examine a special case of the action theories with range-restricted effects and present an algorithm for computing a finite progression. We prove the correctness and the complexity of the algorithm, and show its application in a simple example that is inspired by video games.
First, we investigate the conjecture by Lin and Reiter that a practical first-order definition of progression is not appropriate for the general case. We show that Lin and Reiter were indeed correct in their intuitions by providing a proof for the conjecture, thus resolving the open question about the first-order definability of progression and justifying the need for a second-order definition.
Then we proceed to identify three cases where it is possible to obtain a first-order progression with the desired properties: i) we extend earlier work by Lin and Reiter and present a case where we restrict our attention to a practical class of queries that may only quantify over situations in a limited way; ii) we revisit the local-effect assumption of Liu and Levesque that requires that the effects of an action are fixed by the arguments of the action and show that in this case a first-order progression is suitable; iii) we investigate a way that the local-effect assumption can be relaxed and show that when the initial knowledge base is a database of possible closures and the effects of the actions are range-restricted then a first-order progression is also suitable under a just-in-time assumption.
Finally, we examine a special case of the action theories with range-restricted effects and present an algorithm for computing a finite progression. We prove the correctness and the complexity of the algorithm, and show its application in a simple example that is inspired by video games.
Πρώτο μέρος: Εισαγωγή στην αναπαράσταση προβλημάτων σχεδιασμού (planning) με βάση τη γλώσσα STRIPS. Προέλαση, οπισθοχώρηση, και ευρετικές συναρτήσεις για την εύρεση λύσης σε προβλήματα σχεδιασμού με βάση την αναζήτηση. Αναπαράσταση προβλημάτων σχεδιασμού στην τυπική γλώσσα PDDL και χρήση του planner BlackBox για την επίλυση προβλημάτων σχεδιασμού στο πεδίο του puzzle game Sokoban.
Δεύτερο μέρος: Εισαγωγή στην ανάπτυξη τεχνητής νοημοσύνης για χαρακτήρες (non-player characters) σε video games και εφαρμογές τεχνικών σχεδιασμού σε εμπορικά video games. Αναπαράσταση των βασικών στοιχείων ενός First-Person Shooter game σε PDDL από την οπτική ενός αντίπαλου χαρακτήρα στον κόσμο του παιχνιδιού, και χρήση του planner BlackBox για την επίλυση προβλημάτων σχεδιασμού που σχετίζονται με τις επιλογές του χαρακτήρα στο παιχνίδι. Σύντομος σχολιασμός επιπλέον τεχνικών όπως η παρακολούθηση εκτέλεσης και ο επανασχεδιασμός.