Papers by Kathrin Altwegg
Monthly Notices of the Royal Astronomical Society, 2017
In this paper, we report the first in situ detection of the ammonium ion NH + 4 at 67P/Churyumov-... more In this paper, we report the first in situ detection of the ammonium ion NH + 4 at 67P/Churyumov-Gerasimenko (67P/C-G) in a cometary coma, using the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)/Double Focusing Mass Spectrometer (DFMS). Unlike neutral and ion spectrometers onboard previous cometary missions, the ROSINA/DFMS spectrometer, when operated in ion mode, offers the capability to distinguish NH + 4 from H 2 O + in a cometary coma. We present here the ion data analysis of mass-to-charge ratios 18 and 19 at high spectral resolution and compare the results with an ionospheric model to put these results into context. The model confirms that the ammonium ion NH + 4 is one of the most abundant ion species, as predicted, in the coma near perihelion.

Astronomy & Astrophysics, 2022
Context. Isotopic abundances in comets are key to understanding and reconstructing the history an... more Context. Isotopic abundances in comets are key to understanding and reconstructing the history and origin of material in the Solar System. Data for deuterium-to-hydrogen (D/H) ratios in water are available for several comets. However, no long-term studies of the D/H ratio in water of a comet during its passage around the Sun have been reported. Linear alkanes are important organic molecules, which have been found on several Solar System bodies, including comets. To date, their deuteration is still poorly understood, as only upper limits of isotopic ratios for D/H and 13 C/ 12 C in linear alkanes are available. Aims. The aim of this work is a detailed analysis of the D/H ratio in water as a function of cometary activity and spacecraft location above the nucleus. In addition, a first determination of the D/H and 13 C/ 12 C ratios in the first four linear alkanes, namely, methane (CH 4), ethane (C 2 H 6), propane (C 3 H 8), and butane (C 4 H 10) in the coma of 67P/Churyumov-Gerasimenko is provided. Methods. We analysed in situ measurements from the Rosetta/ROSINA Double Focusing Mass Spectrometer (DFMS). Results. The D/H ratio from HDO/H 2 O and the 16 O/ 17 O ratio from H 2 16 O/H 2 17 O did not change during 67P's passage around the Sun between 2014 and 2016. All D/H ratio measurements were compatible, within 1σ, with the mean value of 5.01 × 10 −4 and its relative variation of 2.0%. This suggests that the D/H ratio in 67P's coma is independent of heliocentric distance, level of cometary activity, as well as spacecraft location with respect to the nucleus. Additionally, the 16 O/ 17 O ratio could be determined with a higher accuracy than previously possible, yielding a value of 2347 with a relative variation of 2.3%. For the alkanes, the D/H ratio is between 4.1 and 4.8 times higher than in H 2 O, while the 13 C/ 12 C ratio is compatible, within uncertainties, with data for other Solar System objects. The relatively high D/H ratio in alkanes is in line with other cometary organic molecules and suggests that these organics may be inherited from the presolar molecular cloud from which the Solar System formed.

Astronomy & Astrophysics, 2021
Context. Gas-phase sodium, silicon, potassium, and calcium were previously identified in mass spe... more Context. Gas-phase sodium, silicon, potassium, and calcium were previously identified in mass spectra recorded in the coma of comet 67P/Churyumov-Gerasimenko, the target of the European Space Agency’s Rosetta mission. The major release process for these atoms was identified as sputtering by the solar wind. More recently, remote observations of numerous comets over a range in heliocentric distances revealed the presence of metal atoms of iron and nickel that had been released either from the nucleus or from a distributed source with a short scale length. Sputtering, however, has been dismissed as a major release process due to the attenuation of the solar wind in the comae of some of the observed targets. Aims. We investigated the presence of refractory species in the gas phase of the coma of 67P/Churyumov-Gerasimenko. This investigation includes a period close to perihelion when the solar wind was likely absent from the near-nucleus region due to the increased cometary activity. Add...

Astronomy & Astrophysics, 2020
Context. The Rosetta spacecraft escorted Comet 67P/Churyumov-Gerasimenko for 2 yr along its journ... more Context. The Rosetta spacecraft escorted Comet 67P/Churyumov-Gerasimenko for 2 yr along its journey through the Solar System between 3.8 and 1.24 au. Thanks to the high resolution mass spectrometer on board Rosetta, the detailed ion composition within a coma has been accurately assessed in situ for the very first time. Aims. Previous cometary missions, such as Giotto, did not have the instrumental capabilities to identify the exact nature of the plasma in a coma because the mass resolution of the spectrometers onboard was too low to separate ion species with similar masses. In contrast, the Double Focusing Mass Spectrometer (DFMS), part of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis on board Rosetta (ROSINA), with its high mass resolution mode, outperformed all of them, revealing the diversity of cometary ions. Methods. We calibrated and analysed the set of spectra acquired by DFMS in ion mode from October 2014 to April 2016. In particular, we focused on the range ...

Monthly Notices of the Royal Astronomical Society, 2020
Although the debate regarding the origin of the cyano (CN) radical in comets has been ongoing for... more Although the debate regarding the origin of the cyano (CN) radical in comets has been ongoing for many decades, it has yielded no definitive answer to date. CN could previously only be studied remotely, strongly hampering efforts to constrain its origin because of very limited spatial information. Thanks to the European Space Agency's Rosetta spacecraft, which orbited comet 67P/Churyumov–Gerasimenko for 2 yr, we can investigate, for the first time, CN around a comet at high spatial and temporal resolution. On board Rosetta's orbiter module, the high-resolution double-focusing mass spectrometer DFMS, part of the ROSINA instrument suite, analysed the neutral volatiles (including HCN and the CN radical) in the inner coma of the comet throughout that whole 2-yr phase and at variable cometocentric distances. From a thorough analysis of the full-mission data, the abundance of CN radicals in the cometary coma has been derived. Data from a close flyby event in 2015 February indicate...

Monthly Notices of the Royal Astronomical Society, 2020
The coma of comet 67P/Churyumov–Gerasimenko has been probed by the Rosetta spacecraft and shows a... more The coma of comet 67P/Churyumov–Gerasimenko has been probed by the Rosetta spacecraft and shows a variety of different molecules. The ROSINA COmet Pressure Sensor and the Double Focusing Mass Spectrometer provide in situ densities for many volatile compounds including the 14 gas species H2O, CO2, CO, H2S, O2, C2H6, CH3OH, H2CO, CH4, NH3, HCN, C2H5OH, OCS, and CS2. We fit the observed densities during the entire comet mission between 2014 August and 2016 September to an inverse coma model. We retrieve surface emissions on a cometary shape with 3996 triangular elements for 50 separated time intervals. For each gas, we derive systematic error bounds and report the temporal evolution of the production, peak production, and the time-integrated total production. We discuss the production for the two lobes of the nucleus and for the Northern and Southern hemispheres. Moreover, we provide a comparison of the gas production with the seasonal illumination.

Monthly Notices of the Royal Astronomical Society, 2020
Deuterated methanol is one of the most robust windows astrochemists have on the individual chemic... more Deuterated methanol is one of the most robust windows astrochemists have on the individual chemical reactions forming deuterium-bearing molecules and the physicochemical history of the regions where they reside. The first-time detection of mono- and di-deuterated methanol in a cometary coma is presented for comet 67P/Churyumov–Gerasimenko using Rosetta–ROSINA data. D-methanol (CH3OD and CH2DOH combined) and D2-methanol (CH2DOD and CHD2OH combined) have an abundance of 5.5 ± 0.46 and 0.00069 ± 0.00014 per cent relative to normal methanol. The data span a methanol deuteration fraction (D/H ratio) in the 0.71−6.6 per cent range, accounting for statistical corrections for the location of D in the molecule and including statistical error propagation in the ROSINA measurements. It is argued that cometary CH2DOH forms from CO hydrogenation to CH3OH and subsequent H–D substitution reactions in CH3–R. CHD2OH is likely produced from deuterated formaldehyde. Meanwhile, CH3OD and CH2DOD could f...
Space Science Reviews, 2020
This chapter reviews the estimates of the dust-to-gas and refractory-to-ice mass ratios derived f... more This chapter reviews the estimates of the dust-to-gas and refractory-to-ice mass ratios derived from Rosetta measurements in the lost materials and the nucleus of 67P/Churyumov-Gerasimenko, respectively. First, the measurements by Rosetta instruments are described, as well as relevant characteristics of 67P. The complex picture of the activity of 67P, with its extreme North-South seasonal asymmetry, is presented. Individual estimates of the dust-to-gas and refractory-to-ice mass ratios are then presented and compared, showing wide ranges of plausible values. Rosetta’s wealth of information suggests that estimates of the dust-to-gas mass ratio made in cometary comae at a single point in time may not be fully representative of the refractory-to-ice mass ratio within the cometary nuclei being observed.

Proceedings of the International Astronomical Union, 2017
The chemical evolution of a star- and planet-forming system begins in the prestellar phase and pr... more The chemical evolution of a star- and planet-forming system begins in the prestellar phase and proceeds across the subsequent evolutionary phases. The chemical trail from cores to protoplanetary disks to planetary embryos can be studied by comparing distant young protostars and comets in our Solar System. One particularly chemically rich system that is thought to be analogous to our own is the low-mass IRAS 16293-2422. ALMA-PILS observations have made the study of chemistry on the disk scales (<100 AU) of this system possible. Under the assumption that comets are pristine tracers of the outer parts of the innate protosolar disk, it is possible to compare the composition of our infant Solar System to that of IRAS 16293-2422. The Rosetta mission has yielded a wealth of unique in situ measurements on comet 67P/C-G, making it the best probe to date. Herein, the initial comparisons in terms of the chemical composition and isotopic ratios are summarized. Much work is still to be carrie...

Nature Astronomy, 2020
Cometary comae are generally depleted in nitrogen. The main carriers for volatile nitrogen in com... more Cometary comae are generally depleted in nitrogen. The main carriers for volatile nitrogen in comets are NH3 and HCN. It is known that ammonia readily combines with many acids like e.g. HCN, HNCO, HCOOH, etc. encountered in the interstellar medium as well as in cometary ice to form ammonium salts (NH4 + X-) at low temperatures. Ammonium salts, which can play a significant role in prebiotic chemistry, are hard to detect in space as they are unstable in the gas phase and their infrared signature is often hidden by thermal radiation or by e.g. OH in minerals. Here we report the presence of all possible sublimation products of five different ammonium salts at comet 67P/Churyumov-Gerasimenko measured by the ROSINA instrument on Rosetta. The relatively high sublimation temperatures of the salts leads to an apparent lack of volatile nitrogen in the coma. This then also explains the observed trend of higher NH3/H2O ratios with decreasing perihelion distances in comets. Main Nitrogen in the volatile part of a comet nucleus is predominantly in the form of NH3 and HCN, which are on average (0.80 ± 0.20) % and (0.21 ± 0.02) %, respectively relative to water, e.g. (1). The numbers for HCN are somewhat uncertain as IR observations generally differ from radio observations (2). Apart from these two molecules, nitrogen bearing species have rather low abundances in comets (2). Especially, neutral N2 escaped detection before the Rosetta mission. Already in 1988, after the Giotto flyby at comet 1P/Halley, Geiss (3) recognized that, while carbon and oxygen relative to silicon are close to solar abundance, comet Halley was clearly lacking nitrogen. One explanation for this depletion at that time was the high volatility of N2, which may not have been condensed in the cometary ice or may have been lost in the last 4.6 Gy. For comet 67P / Churyumov-Gerasimenko (67P hereafter), neutral N2 has now been found on the level of (8.9 ± 2.4) × 10-4 relative to water (~3 % relative to CO) (4). Recently, a high N2/CO ratio of 6% has been reported for comet C/2016 R2 (Pan-STARRS) (5). This shows that N2 is condensed and stored in cometary ice, but the reported abundances are by far not enough to explain the deficiency in nitrogen. N/C atomic ratio in the solar photosphere is about 0.3 ± 0.1 (6). In the refractory phase, comets are also depleted in nitrogen with N/C = 0.05 ± 0.03 in comet 1P (7) and N/C= 0.035 ± 0.011 in comet 67P (8). While the spread in relative abundances of HCN is quite small among comets, the variation for NH3 seems to be much larger (1). What is quite remarkable is the fact that comets with small perihelion distances seem to have much higher NH3/H2O values (1). This suggests that ammonia has a higher sublimation temperature in comets than water, although for pure ice sublimation temperatures are 90 K and 140 K, respectively. In comet D/2012 S1 (ISON) between 1.2 and 0.34 AU, Di Santi et al. (9) found an increase in NH3/H2O from < 0.78 % up to (3.5 ± 0.3) % and in addition a distribution of NH3, inconsistent with release from the nucleus only. It indicates that ammonia could be in a different chemical form than pure ammonia ice, probably associated to dust. So far there is no unambiguous explanation for this observation. One possibility would be ammonium salts as source for ammonia because they generally have higher sublimation temperatures than water and would therefore fit the above observations.

Astronomy & Astrophysics, 2019
The European Space Agency spacecraft Rosetta accompanied the Jupiter-family comet 67P/Churyumov-G... more The European Space Agency spacecraft Rosetta accompanied the Jupiter-family comet 67P/Churyumov-Gerasimenko for over 2 yr along its trajectory through the inner solar system. Between 2014 and 2016, it performed almost continuous in situ measurements of the comet’s gaseous atmosphere in close proximity to its nucleus. In this study, the 16O/18O ratio of H2O in the coma of 67P/Churyumov-Gerasimenko, as measured by the ROSINA DFMS mass spectrometer onboard Rosetta, was determined from the ratio of H216O/H218O and 16OH/18OH. The value of 445 ± 35 represents an ~11% enrichment of 18O compared with the terrestrial ratio of 498.7 ± 0.1. This cometary value is consistent with the comet containing primordial water, in accordance with leading self-shielding models. These models predict primordial water to be between 5 and 20% enriched in heavier oxygen isotopes compared to terrestrial water.

Astronomy & Astrophysics, 2019
Context. Solar wind charge-changing reactions are of paramount importance to the physico-chemistr... more Context. Solar wind charge-changing reactions are of paramount importance to the physico-chemistry of the atmosphere of a comet because they mass-load the solar wind through an effective conversion of fast, light solar wind ions into slow, heavy cometary ions. The ESA/Rosetta mission to comet 67P/Churyumov-Gerasimenko (67P) provided a unique opportunity to study charge-changing processes in situ. Aims. To understand the role of charge-changing reactions in the evolution of the solar wind plasma and to interpret the complex in situ measurements made by Rosetta, numerical or analytical models are necessary. Methods. An extended analytical formalism describing solar wind charge-changing processes at comets along solar wind streamlines is presented. It is based on a thorough book-keeping of available charge-changing cross sections of hydrogen and helium particles in a water gas. Results. After presenting a general 1D solution of charge exchange at comets, we study the theoretical depend...

Space Science Reviews, 2018
Asteroids and comets are the remnants of the swarm of planetesimals from which the planets ultima... more Asteroids and comets are the remnants of the swarm of planetesimals from which the planets ultimately formed, and they retain records of processes that operated prior to and during planet formation. They are also likely the sources of most of the water and other volatiles accreted by Earth. In this review, we discuss the nature and probable origins of asteroids and comets based on data from remote observations, in situ measurements by spacecraft, and laboratory analyses of meteorites derived from asteroids. The asteroidal parent bodies of meteorites formed ≤ 4 Ma after Solar System formation while there was still a gas disk present. It seems increasingly likely that the parent bodies of meteorites spectroscopically linked with the E-, S-, M-and V-type asteroids formed sunward of Jupiter's orbit, while those associated with C-and, possibly, D-type asteroids formed further out, beyond Jupiter but probably not beyond Saturn's orbit. Comets formed further from the Sun than any of the meteorite parent bodies, and retain much higher abundances of interstellar material. CI and CM group meteorites are probably related to the most common C-type asteroids, and based on isotopic evidence they, rather than comets, are the most likely sources of the H and N accreted by the terrestrial planets. However, comets may have been major sources

Monthly Notices of the Royal Astronomical Society, 2017
Rosetta has detected the presence of the hydrogen halides HF, HCl, and HBr in the coma of comet 6... more Rosetta has detected the presence of the hydrogen halides HF, HCl, and HBr in the coma of comet 67P/Churyumov-Gerasimenko. These species are known to freeze out on icy grains in molecular clouds. Analysis of the abundances of HF and HCl as a function of cometocentric distance suggests that these hydrogen halides are released both from the nucleus surface and off dust particles in the inner coma. We present three lines of evidence. First, the abundances of HF and HCl relative to the overall neutral gas in the coma appear to increase with distance, indicating that a net source must be present; since there is no hint at any possible parent species with sufficient abundances that could explain the observed levels of HF or HCl, dust particles are the likely origin. Second, the amplitude of the daily modulation of the halide-to-water density due to the rotation and geometry of 67P's nucleus and the corresponding surface illumination is observed to progressively diminish with distance and comet dust activity; this can be understood from the range of dust particle speeds well below the neutral gas expansion speed, which tends to smooth the coma density profiles. Third, strong halogen abundance changes detected locally in the coma cannot be easily explained from composition changes at the surface, while they can be understood from differences in local gas production from the dust particles.
The Astrophysical Journal, 2016
Comets considered to be pristine objects contain key information about the early formation of the... more Comets considered to be pristine objects contain key information about the early formation of the solar system. Their volatile components can provide clues about the origin and evolution of gases and ices in the comets. Measurements with ROSINA/RTOF at 67P/Churyumov-Gerasimenko have now allowed, for the first time, a direct in situ high-time resolution measurement of the most abundant cometary molecules originating directly from a comet's nucleus over a long time-period, much longer than any previous measurements at a close distance to a comet between 3.1 and 2.3 au. We determine the local densities of H 2 O, CO 2 , and CO, and investigate their variabilities.

Nature Astronomy, 2017
Organohalogens, a class of molecules that contain at least one halogen atom bonded to carbon, are... more Organohalogens, a class of molecules that contain at least one halogen atom bonded to carbon, are abundant on Earth where they are mainly produced through industrial and biological processes [1]. Consequently, they have been proposed as biomarkers in the search for life on exoplanets [2]. Simple halogen hydrides have been detected in interstellar sources and in comets, but the presence and possible incorporation of more complex halogen-containing molecules such as organohalogens into planet-forming regions is uncertain [3, 4]. Here we report the first interstellar detection of two isotopologues of the organohalogen CH 3 Cl and put some constraints on CH 3 F in the gas surrounding the low-mass protostar IRAS 16293-2422, using the Atacama Large Millimeter/submillimeter Array (ALMA). We also find CH 3 Cl in the coma of comet 67P/Churyumov-Gerasimenko (67P/C-G) using the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument. The detections reveal an efficient pre-planetary formation pathway of organohalogens. Cometary impacts may deliver these species to young planets and should thus be included as a potential abiotical production source when interpreting future organohalogen detections in atmospheres of rocky planets.
Science, 2017
Comets contributed to Earth's atmosphere Models of xenon's origin in Earth's atmosphe... more Comets contributed to Earth's atmosphere Models of xenon's origin in Earth's atmosphere require an additional, unknown source that has been a mystery for several decades. Marty et al. measured isotopic ratios of xenon released from comet 67P/Churyumov-Gerasimenko and found that they match the heretofore unknown source. The xenon appears to have been trapped in ice within the comet since before the solar system formed. Comets contributed about a quarter of the xenon on Earth, which constrains the amount of other materials (such as water) delivered to our planet by comets. Science , this issue p. 1069

Monthly Notices of the Royal Astronomical Society, 2017
As the spin axis of comet 67P/Churyumov-Gerasimenko (67P) is not normal to the orbital plane, 67P... more As the spin axis of comet 67P/Churyumov-Gerasimenko (67P) is not normal to the orbital plane, 67P has strong seasonal changes in the illumination conditions on the nucleus' surface, with a short and intense summer in the Southern hemisphere. We have been monitoring these seasonal variations in the gas coma with the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument suite aboard the ESA's Rosetta spacecraft. Rosetta followed 67P from its rendezvous in 2014 August, from a distance of almost 3.5 au to Sun, through perihelion at 1.24 au, and away from Sun again. In this study, we present the change of outgassing pattern during the 2016 March equinox based on measurements acquired with the ROSINA instruments: while H 2 O, O 2 and NH 3 abundances rapidly decreased during this period, CO 2 , CO, H 2 S, CH 4 and HCN abundances decreased much less and showed a strong south-north heterogeneity for the whole period, thus not following Sun. Sublimation temperatures of the pure ices are found to be uncorrelated with the slope of the decrease for the minor species. This can be interpreted as a consequence of two different ice phases, water ice and CO 2 ice, in which the minor species are embedded in different relative abundances.

Astronomy & Astrophysics, 2017
Context. Measurements of isotopic abundances in cometary ices are key to understanding and recons... more Context. Measurements of isotopic abundances in cometary ices are key to understanding and reconstructing the history and origin of material in the solar system. Comets are considered the most pristine material in the solar system. Isotopic fractionation (enrichment of an isotope in a molecule compared to the initial abundance) is sensitive to environmental conditions at the time of comet formation. Therefore, measurements of cometary isotope ratios can provide information on the composition, density, temperature, and radiation during formation of the molecules, during the chemical evolution from the presolar cloud to the protosolar nebula, and the protoplanetary disk before accretion in solid bodies. Most isotopic abundances of 12 C/ 13 C and 16 O/ 18 O in comets to date are in agreement with terrestrial abundances. Prior to the Rosetta mission, measurements of 12 C/ 13 C in comets were only available for HCN, CN, and C 2 and for 16 O/ 18 O in H 2 O. Measurements of 12 C/ 13 C in comets were only available from ground based observations and remote sensing, while 16 O/ 18 O in H 2 O had also been measured in-situ. To date, no measurements of the CO 2 isotopologues in comets were available. Aims. This paper presents the first measurements of the CO 2 isotopologues in the coma of 67P/Churyumov-Gerasimenko (67P). Methods. We analyzed measurements taken by the Double Focusing Mass Spectrometer (DFMS) of the ROSINA experiment on board the ESA spacecraft Rosetta in the coma of 67P. Results. The CO 2 isotopologues results for 67P are: 12 C/ 13 C = 84 ± 4, 16 O/ 18 O = 494 ± 8, and 13 C 16 O 2 / 12 C 18 O 16 O = 5.87 ± 0.07. The oxygen isotopic ratio is within error bars compatible with terrestrial abundances but not with solar wind measurements. Conclusions. The carbon isotopic ratio and the combined carbon and oxygen isotopic ratio are slightly (14%) enriched in 13 C, within 1σ uncertainty, compared to solar wind abundances and solar abundances. The small fractionation of 12 C/ 13 C in CO 2 is probably compatible with an origin of the material in comets from the native cloud.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017
The European Rosetta mission has been following comet 67P/Churyumov–Gerasimenko for 2 years, stud... more The European Rosetta mission has been following comet 67P/Churyumov–Gerasimenko for 2 years, studying the nucleus and coma in great detail. For most of these 2 years the Rosetta Orbiter Sensor for Ion and Neutral Analysis (ROSINA) has analysed the volatile part of the coma. With its high mass resolution and sensitivity it was able to not only detect deuterated water HDO, but also doubly deuterated water, D 2 O and deuterated hydrogen sulfide HDS. The ratios for [HDO]/[H 2 O], [D 2 O]/[HDO] and [HDS]/[H 2 S] derived from our measurements are (1.05 ± 0.14) × 10 −3 , (1.80 ± 0.9) × 10 −2 and (1.2 ± 0.3) × 10 −3 , respectively. These results yield a very high ratio of 17 for [D 2 O]/[HDO] relative to [HDO]/[H 2 O]. Statistically one would expect just 1/4. Such a high value can be explained by cometary water coming unprocessed from the presolar cloud, where water is formed on grains, leading to high deuterium fractionation. The high [HDS]/[H 2 S] ratio is compatible with upper limits det...
Uploads
Papers by Kathrin Altwegg