Papers by Osbaldo Resendis-Antonio

BACKGROUND: Glucose is the preferred carbon and energy source for Escherichia coli. A complex reg... more BACKGROUND: Glucose is the preferred carbon and energy source for Escherichia coli. A complex regulatory network coordinates gene expression, transport and enzyme activities in response to the presence of this sugar. To determine the extent of the cellular response to glucose, we applied an approach combining global transcriptome and regulatory network analyses. RESULTS: Transcriptome data from isogenic wild type and crp- strains grown in Luria-Bertani medium (LB) or LB + 4 g/L glucose (LB+G) were analyzed to identify differentially transcribed genes. We detected 180 and 200 genes displaying increased and reduced relative transcript levels in the presence of glucose, respectively. The observed expression pattern in LB was consistent with a gluconeogenic metabolic state including active transport and interconversion of small molecules and macromolecules, induction of protease-encoding genes and a partial heat shock response. In LB+G, catabolic repression was detected for transport and metabolic interconversion activities. We also detected an increased capacity for de novo synthesis of nucleotides, amino acids and proteins. Cluster analysis of a subset of genes revealed that CRP mediates catabolite repression for most of the genes displaying reduced transcript levels in LB+G, whereas Fis participates in the upregulation of genes under this condition. An analysis of the regulatory network, in terms of topological functional units, revealed 8 interconnected modules which again exposed the importance of Fis and CRP as directly responsible for the coordinated response of the cell. This effect was also seen with other not extensively connected transcription factors such as FruR and PdhR, which showed a consistent response considering media composition. CONCLUSION: This work allowed the identification of eight interconnected regulatory network modules that includes CRP, Fis and other transcriptional factors that respond directly or indirectly to the presence of glucose. In most cases, each of these modules includes genes encoding physiologically related functions, thus indicating a connection between regulatory network topology and related cellular functions involved in nutrient sensing and metabolism.
The transcriptional network of Escherichia coli is currently the best-understood regulatory netwo... more The transcriptional network of Escherichia coli is currently the best-understood regulatory network of a single cell. Motivated by statistical evidence, suggesting a hierarchical modular architecture in this network, we identified eight modules with well-defined physiological functions. These modules were identified by a clustering approach, using the shortest path to trace regulatory relationships across genes in the network. We report the type (feed forward and bifan) and distribution of motifs between and within modules. Feed-forward motifs tend to be embedded within modules, whereas bi-fan motifs tend to link modules, supporting the notion of a hierarchical network with defined functional modules.

Frontiers in Physiology, 2013
One of the main objectives in systems biology is to understand the biological mechanisms that giv... more One of the main objectives in systems biology is to understand the biological mechanisms that give rise to the phenotype of a microorganism by using high-throughput technologies (HTs) and genome-scale mathematical modeling. The computational modeling of genome-scale metabolic reconstructions is one systemic and quantitative strategy for characterizing the metabolic phenotype associated with human diseases and potentially for designing drugs with optimal clinical effects. The purpose of this short review is to describe how computational modeling, including the specific case of constraint-based modeling, can be used to explore, characterize, and predict the metabolic capacities that distinguish the metabolic phenotype of cancer cell lines. As we show herein, this computational framework is far from a pure theoretical description, and to ensure proper biological interpretation, it is necessary to integrate high-throughput data and generate predictions for later experimental assessment. Hence, genome-scale modeling serves as a platform for the following: (1) the integration of data from HTs, (2) the assessment of how metabolic activity is related to phenotype in cancer cell lines, and (3) the design of new experiments to evaluate the outcomes of the in silico analysis. By combining the functions described above, we show that computational modeling is a useful methodology to construct an integrative, systemic, and quantitative scheme for understanding the metabolic profiles of cancer cell lines, a first step to determine the metabolic mechanism by which cancer cells maintain and support their malignant phenotype in human tissues.
Encyclopedia of Systems Biology, 2013
Encyclopedia of Systems Biology, 2013
Encyclopedia of Systems Biology, 2013
Encyclopedia of Systems Biology, 2013
Encyclopedia of Systems Biology, 2013
Encyclopedia of Systems Biology, 2013
Encyclopedia of Systems Biology, 2013
Encyclopedia of Systems Biology, 2013
Encyclopedia of Systems Biology, 2013
PLoS ONE, 2009
Background: Integrative analysis between dynamical modeling of metabolic networks and data obtain... more Background: Integrative analysis between dynamical modeling of metabolic networks and data obtained from high throughput technology represents a worthy effort toward a holistic understanding of the link among phenotype and dynamical response. Even though the theoretical foundation for modeling metabolic network has been extensively treated elsewhere, the lack of kinetic information has limited the analysis in most of the cases. To overcome this constraint, we present and illustrate a new statistical approach that has two purposes: integrate high throughput data and survey the general dynamical mechanisms emerging for a slightly perturbed metabolic network.

PLoS Computational Biology, 2012
Modular organization in biological networks has been suggested as a natural mechanism by which a ... more Modular organization in biological networks has been suggested as a natural mechanism by which a cell coordinates its metabolic strategies for evolving and responding to environmental perturbations. To understand how this occurs, there is a need for developing computational schemes that contribute to integration of genomic-scale information and assist investigators in formulating biological hypotheses in a quantitative and systematic fashion. In this work, we combined metabolome data and constraint-based modeling to elucidate the relationships among structural modules, functional organization, and the optimal metabolic phenotype of Rhizobium etli, a bacterium that fixes nitrogen in symbiosis with Phaseolus vulgaris. To experimentally characterize the metabolic phenotype of this microorganism, we obtained the metabolic profile of 220 metabolites at two physiological stages: under free-living conditions, and during nitrogen fixation with P. vulgaris. By integrating these data into a constraint-based model, we built a refined computational platform with the capability to survey the metabolic activity underlying nitrogen fixation in R. etli. Topological analysis of the metabolic reconstruction led us to identify modular structures with functional activities. Consistent with modular activity in metabolism, we found that most of the metabolites experimentally detected in each module simultaneously increased their relative abundances during nitrogen fixation. In this work, we explore the relationships among topology, biological function, and optimal activity in the metabolism of R. etli through an integrative analysis based on modeling and metabolome data. Our findings suggest that the metabolic activity during nitrogen fixation is supported by interacting structural modules that correlate with three functional classifications: nucleic acids, peptides, and lipids. More fundamentally, we supply evidence that such modular organization during functional nitrogen fixation is a robust property under different environmental conditions.

PLoS Computational Biology, 2007
Rhizobiaceas are bacteria that fix nitrogen during symbiosis with plants. This symbiotic relation... more Rhizobiaceas are bacteria that fix nitrogen during symbiosis with plants. This symbiotic relationship is crucial for the nitrogen cycle, and understanding symbiotic mechanisms is a scientific challenge with direct applications in agronomy and plant development. Rhizobium etli is a bacteria which provides legumes with ammonia (among other chemical compounds), thereby stimulating plant growth. A genome-scale approach, integrating the biochemical information available for R. etli, constitutes an important step toward understanding the symbiotic relationship and its possible improvement. In this work we present a genome-scale metabolic reconstruction (iOR363) for R. etli CFN42, which includes 387 metabolic and transport reactions across 26 metabolic pathways. This model was used to analyze the physiological capabilities of R. etli during stages of nitrogen fixation. To study the physiological capacities in silico, an objective function was formulated to simulate symbiotic nitrogen fixation. Flux balance analysis (FBA) was performed, and the predicted active metabolic pathways agreed qualitatively with experimental observations. In addition, predictions for the effects of gene deletions during nitrogen fixation in Rhizobia in silico also agreed with reported experimental data. Overall, we present some evidence supporting that FBA of the reconstructed metabolic network for R. etli provides results that are in agreement with physiological observations. Thus, as for other organisms, the reconstructed genome-scale metabolic network provides an important framework which allows us to compare model predictions with experimental measurements and eventually generate hypotheses on ways to improve nitrogen fixation. Citation: Resendis-Antonio O, Reed JL, Encarnació n S, Collado-Vides J, Palsson BØ (2007) Metabolic reconstruction and modeling of nitrogen fixation in Rhizobium etli. PLoS Comput Biol 3(10): e192.
FEMS Microbiology Reviews, 2009
Keywords regulatory network inference; regulatory network plasticity; chromosome structure; dynam... more Keywords regulatory network inference; regulatory network plasticity; chromosome structure; dynamical models of regulatory networks; regulatory network.

BMC Systems Biology, 2011
Bacterial nitrogen fixation is the biological process by which atmospheric nitrogen is uptaken by... more Bacterial nitrogen fixation is the biological process by which atmospheric nitrogen is uptaken by bacteroids located in plant root nodules and converted into ammonium through the enzymatic activity of nitrogenase. In practice, this biological process serves as a natural form of fertilization and its optimization has significant implications in sustainable agricultural programs. Currently, the advent of high-throughput technology supplies with valuable data that contribute to understanding the metabolic activity during bacterial nitrogen fixation. This undertaking is not trivial, and the development of computational methods useful in accomplishing an integrative, descriptive and predictive framework is a crucial issue to decoding the principles that regulated the metabolic activity of this biological process. In this work we present a systems biology description of the metabolic activity in bacterial nitrogen fixation. This was accomplished by an integrative analysis involving high-throughput data and constraint-based modeling to characterize the metabolic activity in Rhizobium etli bacteroids located at the root nodules of Phaseolus vulgaris (bean plant). Proteome and transcriptome technologies led us to identify 415 proteins and 689 up-regulated genes that orchestrate this biological process. Taking into account these data, we: 1) extended the metabolic reconstruction reported for R. etli; 2) simulated the metabolic activity during symbiotic nitrogen fixation; and 3) evaluated the in silico results in terms of bacteria phenotype. Notably, constraint-based modeling simulated nitrogen fixation activity in such a way that 76.83% of the enzymes and 69.48% of the genes were experimentally justified. Finally, to further assess the predictive scope of the computational model, gene deletion analysis was carried out on nine metabolic enzymes. Our model concluded that an altered metabolic activity on these enzymes induced different effects in nitrogen fixation, all of these in qualitative agreement with observations made in R. etli and other Rhizobiaceas. In this work we present a genome scale study of the metabolic activity in bacterial nitrogen fixation. This approach leads us to construct a computational model that serves as a guide for 1) integrating high-throughput data, 2) describing and predicting metabolic activity, and 3) designing experiments to explore the genotype-phenotype relationship in bacterial nitrogen fixation.

BMC Systems Biology, 2011
Background: Cervical cancer is a major mortality factor in the female population. This neoplastic... more Background: Cervical cancer is a major mortality factor in the female population. This neoplastic is an excellent model for studying the mechanisms involved in cancer maintenance, because the Human Papilloma Virus (HPV) is the etiology factor in most cases. With the purpose of characterizing the effects of malignant transformation in cellular activity, proteomic studies constitute a reliable way to monitor the biological alterations induced by this disease. In this contextual scheme, a systemic description that enables the identification of the common events between cell lines of different origins, is required to distinguish the essence of carcinogenesis. Results: With this study, we sought to achieve a systemic perspective of the common proteomic profile of six cervical cancer cell lines, both positive and negative for HPV, and which differ from the profile corresponding to the non-tumourgenic cell line, HaCaT. Our objectives were to identify common cellular events participating in cancer maintenance, as well as the establishment of a pipeline to work with proteomic-derived results. We analyzed by means of 2D SDS-PAGE and MALDI-TOF mass spectrometry the protein extracts of six cervical cancer cell lines, from which we identified a consensus of 66 proteins. We call this group of proteins, the "central core of cervical cancer". Starting from this core set of proteins, we acquired a PPI network that pointed, through topological analysis, to some proteins that may well be playing a central role in the neoplastic process, such as 14-3-3ζ. In silico overrepresentation analysis of transcription factors pointed to the overexpression of c-Myc, Max and E2F1 as key transcription factors involved in orchestrating the neoplastic phenotype.
Uploads
Papers by Osbaldo Resendis-Antonio