Papers by Franklin Orndorff-Plunkett

Brain Sciences
Social neuroscience benefits from the experimental manipulation of neuronal activity. One possibl... more Social neuroscience benefits from the experimental manipulation of neuronal activity. One possible manipulation, neurofeedback, is an operant conditioning-based technique in which individuals sense, interact with, and manage their own physiological and mental states. Neurofeedback has been applied to a wide variety of psychiatric illnesses, as well as to treat sub-clinical symptoms, and even to enhance performance in healthy populations. Despite growing interest, there persists a level of distrust and/or bias in the medical and research communities in the USA toward neurofeedback and other functional interventions. As a result, neurofeedback has been largely ignored, or disregarded within social neuroscience. We propose a systematic, empirically-based approach for assessing the effectiveness, and utility of neurofeedback. To that end, we use the term perturbative physiologic plasticity to suggest that biological systems function as an integrated whole that can be perturbed and guided, either directly or indirectly, into different physiological states. When the intention is to normalize the system, e.g., via neurofeedback, we describe it as self-directed neuroplasticity, whose outcome is persistent functional, structural, and behavioral changes. We argue that changes in physiological, neuropsychological, behavioral, interpersonal, and societal functioning following neurofeedback can serve as objective indices and as the metrics necessary for assessing levels of efficacy. In this chapter, we examine the effects of neurofeedback on functional connectivity in a few clinical disorders as case studies for this approach. We believe this broader perspective will open new avenues of investigation, especially within social neuroscience, to further elucidate the mechanisms and effectiveness of these types of interventions, and their relevance to basic research.
The SCREAMER simulation code is widely used at Sandia National Laboratories for designing and sim... more The SCREAMER simulation code is widely used at Sandia National Laboratories for designing and simulating pulsed power accelerator experiments on super power accelerators. A preliminary parameter study of Z with a magnetic switching retrofit illustrates the utility of the automating script for optimizing pulsed power designs. SCREAMER is a circuit based code commonly used in pulsed-power design and requires numerous
Uploads
Papers by Franklin Orndorff-Plunkett