Fruit development involves exocarp color evolution. However, signals that control this process ar... more Fruit development involves exocarp color evolution. However, signals that control this process are still elusive. Differences between dark-red and bicolored sweet cherry cultivars rely on MYB factor gene mutations. Color evolution in bicolored fruits only occurs on the face receiving sunlight, suggesting the perception or response to color-inducing signals is affected. These color differences may be related to synthesis, perception or response to abscisic acid (ABA), a phytohormone responsible for non-climacteric fruit coloring. This work aimed to determine the involvement of ABA in the coloring process of color-contrasting varieties. Several phenolic accumulation patterns differed between bicolored ‘Royal Rainier’ and dark-red ‘Lapins’. Transcript abundance of ABA biosynthetic genes (PavPSY, PavZEP and PavNCED1) decreased dramatically from the Pink to Red stage in ‘Royal Rainier’ but increased in ‘Lapins’, which correlated with a higher ABA content in this dark-red cultivar. Transc...
Wheat and rice play a vital role in human nutrition and food security. A better understanding of ... more Wheat and rice play a vital role in human nutrition and food security. A better understanding of the potential health benefits associated with consuming these cereals, combined with studies by plant scientists and food chemists to view the entire food value chain from the field, pre and post-harvest processing, and subsequent “fork” consumption, may provide the necessary tools to optimize wheat and rice production towards the goal of better human health improvement and food security, providing tools to better adapt to the challenges associated with climate change. Since the available literature usually focuses on only one food chain segment, this narrative review was designed to address the identities and concentration of phenolics of these cereal crops from a farm-to-fork perspective. Wheat and rice genetics, phenolic databases, antioxidant properties, and potential health effects are summarized. These cereals contain much more than phenolic acids, having significant concentrations...
International Journal of Agriculture and Natural Resources
This study reports the genetic diversity among Chilean heritage blood-flesh peaches and the chara... more This study reports the genetic diversity among Chilean heritage blood-flesh peaches and the characterization of phytochemicals and bioactive compounds present in these fruits. A genetic diversity analysis using 7,934 SNP markers was performed. The average observed heterozygosity (Ho=0.09) was very low in the 75 Chilean blood-flesh peach trees, whereas 14 commercial peach varieties had significantly higher levels of heterozygosity (Ho=0.32). Furthermore, the blood-flesh peach lines were genetically similar, and all of these lines were genetically different from the commercial varieties. A comparative analysis was carried out between the epicarp and mesocarp of the peach fruits. Fruit quality parameters were evaluated at harvest (weight, size, firmness and soluble solids), and concentrations of total polyphenols, anthocyanins, carotenoids, as were macro (P, K, Ca, Mg) and microelements (Fe, Zn, Mn, B, Cu). These analyses showed that blood-flesh peaches have high concentrations of anth...
Abscisic acid (ABA) plays a key role in the ripening process of non-climacteric fruits, triggerin... more Abscisic acid (ABA) plays a key role in the ripening process of non-climacteric fruits, triggering pigment production, fruit softening, and sugar accumulation. Transcriptomic studies show that ABA modifies the expression of several ripening-related genes, but to date, the epigenetic approach has not been utilized to characterize the role of ABA during this process. Therefore, this work aimed to perform transcriptomic and DNA methylation analyses of fruit samples treated with ABA during the fruit ripening process in the non-climacteric sweet cherry model. RNA-seq analyses revealed an overrepresentation of transcripts annotated in functional categories related to ABA response, secondary metabolism, and sugar synthesis. In contrast, Whole Genome Bisulfite Sequencing (WGBS) revealed DNA hypomethylation in the 5’UTR region of genes related to carotene catabolism. Genes encoding xyloglucan enzymes were regulated transcriptionally and epigenetically during ripening. ABA treatment enhanced ...
A genotyping by sequencing (GBS) approach was used to analyze the organization of genetic diversi... more A genotyping by sequencing (GBS) approach was used to analyze the organization of genetic diversity in V. pubescens and V. chilensis. GBS identified 4675 and 4451 SNPs/INDELs in two papaya species. The cultivated orchards of V. pubescens exhibited scarce genetic diversity and low but significant genetic differentiation. The neutrality test yielded a negative and significant result, suggesting that V. pubescens suffered a selective sweep or a rapid expansion after a bottleneck during domestication. In contrast, V. chilensis exhibited a high level of genetic diversity. The genetic differentiation among the populations was slight, but it was possible to distinguish the two genetic groups. The neutrality test indicated no evidence that natural selection and genetic drift affect the natural population of V. chilensis. Using the Carica papaya genome as a reference, we identified critical SNPs/INDELs associated with putative genes. Most of the identified genes are related to stress respons...
Multidimensional fluorescence microscopy of multiple organelles in Arabidopsis seedlings-6
Al cells were scored. The columns show averaged interaction-rates in the observed cells with stan... more Al cells were scored. The columns show averaged interaction-rates in the observed cells with standard deviations. Significantly different (P ≤ 0.01) rates from the mock treated samples are indicated with asterisks. Mock: 0.1% (v/v) dimethyl sulfoxide (N = 128), Lat: 40 μM latrunculin B (N = 88), Ory: 10 μM oryzalin (N = 86), DNP: 40 μM 2, 4-dinitrophenol (N = 34), BDM: 20 μM 2, 3-butanedione monoxime (N = 42), NEM: 50 μM N-ethylmaleimide (N = 84), NEM/Lat: 50 μM N-ethylmaleimide and 40 μM latrunculin (N = 61), NEM/Ory: 50 μM N-ethylmaleimide and 10 μM oryzalin (N = 62).<b>Copyright information:</b>Taken from "Multidimensional fluorescence microscopy of multiple organelles in Arabidopsis seedlings"http://www.plantmethods.com/content/4/1/9Plant Methods 2008;4():9-9.Published online 19 May 2008PMCID:PMC2424051.
Several phytohormones modulate ripening in non-climacteric fruits, which is triggered by abscisic... more Several phytohormones modulate ripening in non-climacteric fruits, which is triggered by abscisic acid (ABA). Gibberellins (GAs) are present during the onset of ripening in sweet cherry fruits, and exogenous gibberellic acid (GA3) application delays ripening, though this effect is variety-dependent. Although an ABA accumulation delay has been reported following GA3 treatment, the mechanism by which GA modulates this process has not been investigated at the molecular level in sweet cherry. Therefore, the aim of this work is to analyze the effect of GA3 on the fruit ripening process and the transcript levels of ABA pathway orthologs in two varieties having different maturity time phenotypes. The early-season variety had a rapid transition from yellow to pink fruit color, whereas pink color initiation took longer in the mid-season variety. GA3 increased the proportion of lighter colored fruits at ripeness in both varieties, but it produced a delay in IAD—a ripening index—only in the mi...
Gibberellin (GA) negatively affects color evolution and other ripening-related processes in non-c... more Gibberellin (GA) negatively affects color evolution and other ripening-related processes in non-climacteric fruits. The bioactive GA, gibberellic acid (GA3), is commonly applied at the light green-to-straw yellow transition to increase firmness and delay ripening in sweet cherry (Prunus avium L.), though causing different effects depending on the variety. Recently, we reported that GA3 delayed the IAD parameter (a ripening index) in a mid-season variety, whereas GA3 did not delay IAD but reduced it at ripeness in an early-season variety. To further explore this contrasting behavior between varieties, we analyzed the transcriptomic responses to GA3 applied on two sweet cherry varieties with different maturity time phenotypes. At harvest, GA3 produced fruits with less color in both varieties. Similar to our previous report, GA3 delayed fruit color initiation and IAD only in the mid-season variety, and reduced IAD at harvest only in the early-season variety. RNA-seq analysis of control...
In sweet cherry, as in most non-climacteric species, abscisic acid (ABA) plays a major role in th... more In sweet cherry, as in most non-climacteric species, abscisic acid (ABA) plays a major role in the control of fruit ripening and color development. Although the ABA treatment of sweet cherry fruits has been reported to upregulate anthocyanin pathwayrelated genes or ABA pathway-related genes, the temporality of molecular and physiological events occurring during color development and the ABA control of these events during the color initiation are lacking in this species. In this work, we analyzed variations in the Index of Absorbance Difference (IAD), a maturity index, and total anthocyanins along with changes in transcript abundance of ABA and anthocyanin pathway-related genes, from light green to red fruit stages. PavNCED1 and ABA signaling pathway-related genes upregulated when fruits transitioned from light green to pink stage, whereas anthocyanin pathway-related transcripts increased from pink to the red stage, together with increases in the anthocyanin content and IAD, suggesting sequentiality in molecular and physiological events during color development. Additionally, ABA applied at color initiation in planta advanced IAD, increased anthocyanin content, and yielded darker fruits at harvest. These changes were accompanied by changes in the transcript accumulation of ABA and anthocyanin pathway-related genes. This in planta treatment of sweet cherry fruits with ABA confirms that ABA is a central player in the control of color initiation in sweet cherries, associated with the transcript accumulation of genes involved in ABA homeostasis and signaling, which is followed by the up-regulation of anthocyanin pathway-related genes and color development.
Gibberellin (GA) negatively affects color evolution and other ripening-related processes in non-c... more Gibberellin (GA) negatively affects color evolution and other ripening-related processes in non-climacteric fruits. The bioactive GA, gibberellic acid (GA3), is commonly applied at the light green-to-straw yellow transition to increase firmness and delay ripening in sweet cherry (Prunus avium L.), though causing different effects depending on the variety. Recently, we reported that GA3 delayed the IAD parameter (a ripening index) in a mid-season variety, whereas GA3 did not delay IAD but reduced it at ripeness in an early-season variety. To further explore this contrasting behavior between varieties, we analyzed the transcriptomic responses to GA3 applied on two sweet cherry varieties with different maturity time phenotypes. At harvest, GA3 produced fruits with less color in both varieties. Similar to our previous report, GA3 delayed fruit color initiation and IAD only in the mid-season variety and reduced IAD at harvest only in the early-season variety. RNA-seq analysis of control-...
Color acquisition is one of the most distinctive features of fruit development and ripening proce... more Color acquisition is one of the most distinctive features of fruit development and ripening processes. The color red is closely related to the accumulation of polyphenolic compounds, mainly anthocyanins, during sweet cherry fruit maturity. In nonclimacteric fruit species like sweet cherry, the maturity process is mainly controlled by the phytohormone abscisic acid (ABA), though other hormones may also play a role. However, the coordinated stage-specific production of polyphenolic compounds and their relation with hormone content variations have not been studied in depth in sweet cherry fruits. To further understand the accumulation dynamics of these compounds (hormones and metabolites) during fruit development, two sweet cherry cultivars ("Lapins" and "Glenred") with contrasting maturity timing phenotypes were analyzed using targeted metabolic analysis. The ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) approach revealed that phenolic acids, flavonols, and flavan-3-ols accumulated mainly until the straw-yellow stage in the early-maturing cultivar, while accumulation was mainly at the green stage in the mid-maturing cultivar, suggesting a cultivar-dependent stage-specific production of secondary metabolites. In the mid-maturing cultivar, anthocyanins were detected only from the red stage onward, whereas detection began at the pink stage in the early-maturing cultivar. ABA negatively correlated (p-value < 0.05) with the flavonols and flavan-3-ols in both cultivars. ABA and anthocyanin content increased at the same time in the early-season cultivar. In contrast, anthocyanins accumulated and the pink color initiation started several days after the ABA increase in the mid-maturing cultivar. Differential accumulation patterns of GA 4 , a ripening antagonizing hormone, between the cultivars could explain this difference. These results showed that both red-colored cultivars presented different accumulation dynamics of phenolic compounds and plant hormones during fruit development, suggesting underlying differences in the sweet cherry fruit color evolution.
Abscisic acid (ABA) plays a major role in promoting ripening in sweet cherry, a non-climateric fr... more Abscisic acid (ABA) plays a major role in promoting ripening in sweet cherry, a non-climateric fruit. Exogenous application of ABA has been performed to study fruit ripening and cracking, but this growth regulator is not used for commercial production. To determine the potential of this growth regulator to improve sweet cherry fruit quality, ABA canopy spraying was assayed in four cultivars. Canopy spraying of S-ABA significantly: 1) enhanced sweet cherry fruit color in ‘Glenred’, ‘Lapins’ and 'Bing' cultivars, but not in ‘Royal Rainier’ (a bi-colored cultivar), and 2) decreased fruit size and firmness in ‘Lapins’, ‘Bing’ and ‘Royal Rainier’. Seasonally reproducible effects were seen in ‘Lapins’ (mid/late-maturing) but not in ‘Glenred’ (early-maturing). Canopy spraying of nordihydroguaiaretic acid (NDGA) decreased color and increased fruit size in ‘Lapins’, but not in ‘Glenred’. Direct application of ABA on fruits attached to the tree, without application to the foliage, inc...
Ethylene plays an essential role in the ripening of peach, a climacteric stone fruit. However, se... more Ethylene plays an essential role in the ripening of peach, a climacteric stone fruit. However, several studies have shown that other phytohormones may alter fruit organoleptic properties, nutritional value, and overall quality. Although cytokinin levels are highest during fruit set and early stages of fruit development, exogenous cytokinin application on the late stages of peach fruit development (post-lignification stage) alters the peach fruit ripening indicators and delays ripening. To better understand the molecular mechanisms by which cytokinin alters fruit ripening and fruit quality traits, we identified a conserved set of 26 peach cytokinin-regulated orthologs of the Arabidopsis cytokinin-regulated genes. All but two of these genes show expression in ripe peach fruits. The peach cytokinin-regulated genes map throughout the Prunus persica genome, located on all eight chromosome-scale pseudomolecules. However, eight of these orthologs are located on pseudomolecule 1, while five orthologs are on pseudomolecule 2. Gene Ontology enrichment analyses revealed that many of these genes are associated with metabolic processes. The region upstream of the transcription start site contained Cytokinin Response Elements (CKREs) in 77% (20/26) of these putative cytokinin-regulated genes. The cytokinin responsiveness of eight of these genes (PpeBPH1,
triggers metabolic and gene expression changes leading to improved quality traits of two sweet ch... more triggers metabolic and gene expression changes leading to improved quality traits of two sweet cherry cultivars during cold storage, Food Chemistry (2020), doi:
Sweet cherry fruits from different cultivars have different pre-and post-harvest qualities. Here ... more Sweet cherry fruits from different cultivars have different pre-and post-harvest qualities. Here we present the transcriptome profile datasets of leaves and mature fruits of three sweet cherry cultivars ('Bing', 'Lapin' and 'Rainier'). Using 454 GS-FLX technology (454 Life Sciences, Roche), transcriptomes of leaves and mature fruits were obtained from these cultivars. These transcriptome data sets are reported here.
The plant family Rosaceae is comprised of a highly diverse group of plants, with a wide range of ... more The plant family Rosaceae is comprised of a highly diverse group of plants, with a wide range of ornamental and agricultural uses throughout the world. Comparative genomic analyses between rosaceous species are increasingly being used to assign putative function. With the wealth of new data, there is a need to standardize nomenclature to ensure uniformity and clarity across research groups. The Rosaceae Gene Name Standardization Committee was formed to develop a naming guideline for genes in Rosaceae family members. This manuscript details the issues involved with naming genes and proposes a common nomenclature system. The Genome Database for Rosaceae (GDR) (www.rosaceae.org) has developed a gene database that will support user-submitted gene names and annotations in addition to the predicted genes from whole genome sequences. GDR also hosts user-curated lists of gene class symbols. To facilitate standardization of gene names and avoid misinterpretation, the committee recommends that the GDR serve as the database of record for the names of Rosaceae genes and that gene names, gene class symbols, and gene annotation be registered in GDR prior to publication in peer reviewed journals.
Peaches are stored at low temperatures to delay ripening and increase postharvest life. However s... more Peaches are stored at low temperatures to delay ripening and increase postharvest life. However some varieties are susceptible to chilling injury,which leads to fruit mealiness, browning and flesh bleeding. In order to identify potentialmarkers associated with chilling injury,we performed proteomic analyses on a segregating population with contrasting susceptibility to chilling-induced mealiness. Chilling-induced mealiness was assessed by measuring juiciness in fruits that have been stored in cold and then allowed to ripen. Fruitmesocarp and leaf proteome from contrasting segregants were analyzed using 2-DE gels. Comparison of protein abundance between segregants revealed 133 spots from fruit mesocarp and 36 from leaf. Thirty four fruit mesocarp proteins were identified from these spots. Most of these proteins were related to ethylene synthesis, ABA response and stress response. Leaf protein analyses identified 22 proteins, most of which related to energy metabolism. Some of the gen...
Fruit development involves exocarp color evolution. However, signals that control this process ar... more Fruit development involves exocarp color evolution. However, signals that control this process are still elusive. Differences between dark-red and bicolored sweet cherry cultivars rely on MYB factor gene mutations. Color evolution in bicolored fruits only occurs on the face receiving sunlight, suggesting the perception or response to color-inducing signals is affected. These color differences may be related to synthesis, perception or response to abscisic acid (ABA), a phytohormone responsible for non-climacteric fruit coloring. This work aimed to determine the involvement of ABA in the coloring process of color-contrasting varieties. Several phenolic accumulation patterns differed between bicolored ‘Royal Rainier’ and dark-red ‘Lapins’. Transcript abundance of ABA biosynthetic genes (PavPSY, PavZEP and PavNCED1) decreased dramatically from the Pink to Red stage in ‘Royal Rainier’ but increased in ‘Lapins’, which correlated with a higher ABA content in this dark-red cultivar. Transc...
Wheat and rice play a vital role in human nutrition and food security. A better understanding of ... more Wheat and rice play a vital role in human nutrition and food security. A better understanding of the potential health benefits associated with consuming these cereals, combined with studies by plant scientists and food chemists to view the entire food value chain from the field, pre and post-harvest processing, and subsequent “fork” consumption, may provide the necessary tools to optimize wheat and rice production towards the goal of better human health improvement and food security, providing tools to better adapt to the challenges associated with climate change. Since the available literature usually focuses on only one food chain segment, this narrative review was designed to address the identities and concentration of phenolics of these cereal crops from a farm-to-fork perspective. Wheat and rice genetics, phenolic databases, antioxidant properties, and potential health effects are summarized. These cereals contain much more than phenolic acids, having significant concentrations...
International Journal of Agriculture and Natural Resources
This study reports the genetic diversity among Chilean heritage blood-flesh peaches and the chara... more This study reports the genetic diversity among Chilean heritage blood-flesh peaches and the characterization of phytochemicals and bioactive compounds present in these fruits. A genetic diversity analysis using 7,934 SNP markers was performed. The average observed heterozygosity (Ho=0.09) was very low in the 75 Chilean blood-flesh peach trees, whereas 14 commercial peach varieties had significantly higher levels of heterozygosity (Ho=0.32). Furthermore, the blood-flesh peach lines were genetically similar, and all of these lines were genetically different from the commercial varieties. A comparative analysis was carried out between the epicarp and mesocarp of the peach fruits. Fruit quality parameters were evaluated at harvest (weight, size, firmness and soluble solids), and concentrations of total polyphenols, anthocyanins, carotenoids, as were macro (P, K, Ca, Mg) and microelements (Fe, Zn, Mn, B, Cu). These analyses showed that blood-flesh peaches have high concentrations of anth...
Abscisic acid (ABA) plays a key role in the ripening process of non-climacteric fruits, triggerin... more Abscisic acid (ABA) plays a key role in the ripening process of non-climacteric fruits, triggering pigment production, fruit softening, and sugar accumulation. Transcriptomic studies show that ABA modifies the expression of several ripening-related genes, but to date, the epigenetic approach has not been utilized to characterize the role of ABA during this process. Therefore, this work aimed to perform transcriptomic and DNA methylation analyses of fruit samples treated with ABA during the fruit ripening process in the non-climacteric sweet cherry model. RNA-seq analyses revealed an overrepresentation of transcripts annotated in functional categories related to ABA response, secondary metabolism, and sugar synthesis. In contrast, Whole Genome Bisulfite Sequencing (WGBS) revealed DNA hypomethylation in the 5’UTR region of genes related to carotene catabolism. Genes encoding xyloglucan enzymes were regulated transcriptionally and epigenetically during ripening. ABA treatment enhanced ...
A genotyping by sequencing (GBS) approach was used to analyze the organization of genetic diversi... more A genotyping by sequencing (GBS) approach was used to analyze the organization of genetic diversity in V. pubescens and V. chilensis. GBS identified 4675 and 4451 SNPs/INDELs in two papaya species. The cultivated orchards of V. pubescens exhibited scarce genetic diversity and low but significant genetic differentiation. The neutrality test yielded a negative and significant result, suggesting that V. pubescens suffered a selective sweep or a rapid expansion after a bottleneck during domestication. In contrast, V. chilensis exhibited a high level of genetic diversity. The genetic differentiation among the populations was slight, but it was possible to distinguish the two genetic groups. The neutrality test indicated no evidence that natural selection and genetic drift affect the natural population of V. chilensis. Using the Carica papaya genome as a reference, we identified critical SNPs/INDELs associated with putative genes. Most of the identified genes are related to stress respons...
Multidimensional fluorescence microscopy of multiple organelles in Arabidopsis seedlings-6
Al cells were scored. The columns show averaged interaction-rates in the observed cells with stan... more Al cells were scored. The columns show averaged interaction-rates in the observed cells with standard deviations. Significantly different (P ≤ 0.01) rates from the mock treated samples are indicated with asterisks. Mock: 0.1% (v/v) dimethyl sulfoxide (N = 128), Lat: 40 μM latrunculin B (N = 88), Ory: 10 μM oryzalin (N = 86), DNP: 40 μM 2, 4-dinitrophenol (N = 34), BDM: 20 μM 2, 3-butanedione monoxime (N = 42), NEM: 50 μM N-ethylmaleimide (N = 84), NEM/Lat: 50 μM N-ethylmaleimide and 40 μM latrunculin (N = 61), NEM/Ory: 50 μM N-ethylmaleimide and 10 μM oryzalin (N = 62).<b>Copyright information:</b>Taken from "Multidimensional fluorescence microscopy of multiple organelles in Arabidopsis seedlings"http://www.plantmethods.com/content/4/1/9Plant Methods 2008;4():9-9.Published online 19 May 2008PMCID:PMC2424051.
Several phytohormones modulate ripening in non-climacteric fruits, which is triggered by abscisic... more Several phytohormones modulate ripening in non-climacteric fruits, which is triggered by abscisic acid (ABA). Gibberellins (GAs) are present during the onset of ripening in sweet cherry fruits, and exogenous gibberellic acid (GA3) application delays ripening, though this effect is variety-dependent. Although an ABA accumulation delay has been reported following GA3 treatment, the mechanism by which GA modulates this process has not been investigated at the molecular level in sweet cherry. Therefore, the aim of this work is to analyze the effect of GA3 on the fruit ripening process and the transcript levels of ABA pathway orthologs in two varieties having different maturity time phenotypes. The early-season variety had a rapid transition from yellow to pink fruit color, whereas pink color initiation took longer in the mid-season variety. GA3 increased the proportion of lighter colored fruits at ripeness in both varieties, but it produced a delay in IAD—a ripening index—only in the mi...
Gibberellin (GA) negatively affects color evolution and other ripening-related processes in non-c... more Gibberellin (GA) negatively affects color evolution and other ripening-related processes in non-climacteric fruits. The bioactive GA, gibberellic acid (GA3), is commonly applied at the light green-to-straw yellow transition to increase firmness and delay ripening in sweet cherry (Prunus avium L.), though causing different effects depending on the variety. Recently, we reported that GA3 delayed the IAD parameter (a ripening index) in a mid-season variety, whereas GA3 did not delay IAD but reduced it at ripeness in an early-season variety. To further explore this contrasting behavior between varieties, we analyzed the transcriptomic responses to GA3 applied on two sweet cherry varieties with different maturity time phenotypes. At harvest, GA3 produced fruits with less color in both varieties. Similar to our previous report, GA3 delayed fruit color initiation and IAD only in the mid-season variety, and reduced IAD at harvest only in the early-season variety. RNA-seq analysis of control...
In sweet cherry, as in most non-climacteric species, abscisic acid (ABA) plays a major role in th... more In sweet cherry, as in most non-climacteric species, abscisic acid (ABA) plays a major role in the control of fruit ripening and color development. Although the ABA treatment of sweet cherry fruits has been reported to upregulate anthocyanin pathwayrelated genes or ABA pathway-related genes, the temporality of molecular and physiological events occurring during color development and the ABA control of these events during the color initiation are lacking in this species. In this work, we analyzed variations in the Index of Absorbance Difference (IAD), a maturity index, and total anthocyanins along with changes in transcript abundance of ABA and anthocyanin pathway-related genes, from light green to red fruit stages. PavNCED1 and ABA signaling pathway-related genes upregulated when fruits transitioned from light green to pink stage, whereas anthocyanin pathway-related transcripts increased from pink to the red stage, together with increases in the anthocyanin content and IAD, suggesting sequentiality in molecular and physiological events during color development. Additionally, ABA applied at color initiation in planta advanced IAD, increased anthocyanin content, and yielded darker fruits at harvest. These changes were accompanied by changes in the transcript accumulation of ABA and anthocyanin pathway-related genes. This in planta treatment of sweet cherry fruits with ABA confirms that ABA is a central player in the control of color initiation in sweet cherries, associated with the transcript accumulation of genes involved in ABA homeostasis and signaling, which is followed by the up-regulation of anthocyanin pathway-related genes and color development.
Gibberellin (GA) negatively affects color evolution and other ripening-related processes in non-c... more Gibberellin (GA) negatively affects color evolution and other ripening-related processes in non-climacteric fruits. The bioactive GA, gibberellic acid (GA3), is commonly applied at the light green-to-straw yellow transition to increase firmness and delay ripening in sweet cherry (Prunus avium L.), though causing different effects depending on the variety. Recently, we reported that GA3 delayed the IAD parameter (a ripening index) in a mid-season variety, whereas GA3 did not delay IAD but reduced it at ripeness in an early-season variety. To further explore this contrasting behavior between varieties, we analyzed the transcriptomic responses to GA3 applied on two sweet cherry varieties with different maturity time phenotypes. At harvest, GA3 produced fruits with less color in both varieties. Similar to our previous report, GA3 delayed fruit color initiation and IAD only in the mid-season variety and reduced IAD at harvest only in the early-season variety. RNA-seq analysis of control-...
Color acquisition is one of the most distinctive features of fruit development and ripening proce... more Color acquisition is one of the most distinctive features of fruit development and ripening processes. The color red is closely related to the accumulation of polyphenolic compounds, mainly anthocyanins, during sweet cherry fruit maturity. In nonclimacteric fruit species like sweet cherry, the maturity process is mainly controlled by the phytohormone abscisic acid (ABA), though other hormones may also play a role. However, the coordinated stage-specific production of polyphenolic compounds and their relation with hormone content variations have not been studied in depth in sweet cherry fruits. To further understand the accumulation dynamics of these compounds (hormones and metabolites) during fruit development, two sweet cherry cultivars ("Lapins" and "Glenred") with contrasting maturity timing phenotypes were analyzed using targeted metabolic analysis. The ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) approach revealed that phenolic acids, flavonols, and flavan-3-ols accumulated mainly until the straw-yellow stage in the early-maturing cultivar, while accumulation was mainly at the green stage in the mid-maturing cultivar, suggesting a cultivar-dependent stage-specific production of secondary metabolites. In the mid-maturing cultivar, anthocyanins were detected only from the red stage onward, whereas detection began at the pink stage in the early-maturing cultivar. ABA negatively correlated (p-value < 0.05) with the flavonols and flavan-3-ols in both cultivars. ABA and anthocyanin content increased at the same time in the early-season cultivar. In contrast, anthocyanins accumulated and the pink color initiation started several days after the ABA increase in the mid-maturing cultivar. Differential accumulation patterns of GA 4 , a ripening antagonizing hormone, between the cultivars could explain this difference. These results showed that both red-colored cultivars presented different accumulation dynamics of phenolic compounds and plant hormones during fruit development, suggesting underlying differences in the sweet cherry fruit color evolution.
Abscisic acid (ABA) plays a major role in promoting ripening in sweet cherry, a non-climateric fr... more Abscisic acid (ABA) plays a major role in promoting ripening in sweet cherry, a non-climateric fruit. Exogenous application of ABA has been performed to study fruit ripening and cracking, but this growth regulator is not used for commercial production. To determine the potential of this growth regulator to improve sweet cherry fruit quality, ABA canopy spraying was assayed in four cultivars. Canopy spraying of S-ABA significantly: 1) enhanced sweet cherry fruit color in ‘Glenred’, ‘Lapins’ and 'Bing' cultivars, but not in ‘Royal Rainier’ (a bi-colored cultivar), and 2) decreased fruit size and firmness in ‘Lapins’, ‘Bing’ and ‘Royal Rainier’. Seasonally reproducible effects were seen in ‘Lapins’ (mid/late-maturing) but not in ‘Glenred’ (early-maturing). Canopy spraying of nordihydroguaiaretic acid (NDGA) decreased color and increased fruit size in ‘Lapins’, but not in ‘Glenred’. Direct application of ABA on fruits attached to the tree, without application to the foliage, inc...
Ethylene plays an essential role in the ripening of peach, a climacteric stone fruit. However, se... more Ethylene plays an essential role in the ripening of peach, a climacteric stone fruit. However, several studies have shown that other phytohormones may alter fruit organoleptic properties, nutritional value, and overall quality. Although cytokinin levels are highest during fruit set and early stages of fruit development, exogenous cytokinin application on the late stages of peach fruit development (post-lignification stage) alters the peach fruit ripening indicators and delays ripening. To better understand the molecular mechanisms by which cytokinin alters fruit ripening and fruit quality traits, we identified a conserved set of 26 peach cytokinin-regulated orthologs of the Arabidopsis cytokinin-regulated genes. All but two of these genes show expression in ripe peach fruits. The peach cytokinin-regulated genes map throughout the Prunus persica genome, located on all eight chromosome-scale pseudomolecules. However, eight of these orthologs are located on pseudomolecule 1, while five orthologs are on pseudomolecule 2. Gene Ontology enrichment analyses revealed that many of these genes are associated with metabolic processes. The region upstream of the transcription start site contained Cytokinin Response Elements (CKREs) in 77% (20/26) of these putative cytokinin-regulated genes. The cytokinin responsiveness of eight of these genes (PpeBPH1,
triggers metabolic and gene expression changes leading to improved quality traits of two sweet ch... more triggers metabolic and gene expression changes leading to improved quality traits of two sweet cherry cultivars during cold storage, Food Chemistry (2020), doi:
Sweet cherry fruits from different cultivars have different pre-and post-harvest qualities. Here ... more Sweet cherry fruits from different cultivars have different pre-and post-harvest qualities. Here we present the transcriptome profile datasets of leaves and mature fruits of three sweet cherry cultivars ('Bing', 'Lapin' and 'Rainier'). Using 454 GS-FLX technology (454 Life Sciences, Roche), transcriptomes of leaves and mature fruits were obtained from these cultivars. These transcriptome data sets are reported here.
The plant family Rosaceae is comprised of a highly diverse group of plants, with a wide range of ... more The plant family Rosaceae is comprised of a highly diverse group of plants, with a wide range of ornamental and agricultural uses throughout the world. Comparative genomic analyses between rosaceous species are increasingly being used to assign putative function. With the wealth of new data, there is a need to standardize nomenclature to ensure uniformity and clarity across research groups. The Rosaceae Gene Name Standardization Committee was formed to develop a naming guideline for genes in Rosaceae family members. This manuscript details the issues involved with naming genes and proposes a common nomenclature system. The Genome Database for Rosaceae (GDR) (www.rosaceae.org) has developed a gene database that will support user-submitted gene names and annotations in addition to the predicted genes from whole genome sequences. GDR also hosts user-curated lists of gene class symbols. To facilitate standardization of gene names and avoid misinterpretation, the committee recommends that the GDR serve as the database of record for the names of Rosaceae genes and that gene names, gene class symbols, and gene annotation be registered in GDR prior to publication in peer reviewed journals.
Peaches are stored at low temperatures to delay ripening and increase postharvest life. However s... more Peaches are stored at low temperatures to delay ripening and increase postharvest life. However some varieties are susceptible to chilling injury,which leads to fruit mealiness, browning and flesh bleeding. In order to identify potentialmarkers associated with chilling injury,we performed proteomic analyses on a segregating population with contrasting susceptibility to chilling-induced mealiness. Chilling-induced mealiness was assessed by measuring juiciness in fruits that have been stored in cold and then allowed to ripen. Fruitmesocarp and leaf proteome from contrasting segregants were analyzed using 2-DE gels. Comparison of protein abundance between segregants revealed 133 spots from fruit mesocarp and 36 from leaf. Thirty four fruit mesocarp proteins were identified from these spots. Most of these proteins were related to ethylene synthesis, ABA response and stress response. Leaf protein analyses identified 22 proteins, most of which related to energy metabolism. Some of the gen...
Uploads
Papers by Lee Meisel