Papers by Matilde Cordeiro
<p>Mixed-model analysis of variance results on the performance traits.</p

Domesticated species are impacted in unintended ways during domestication and breeding. Changes i... more Domesticated species are impacted in unintended ways during domestication and breeding. Changes in the nature and intensity of selection impart genetic drift, reduce diversity, and increase the frequency of deleterious alleles. Such outcomes constrain our ability to expand the cultivation of crops into environments that differ from those under which domestication occurred. We address this need in chickpea, an important pulse legume, by harnessing the diversity of wild crop relatives. We document an extreme domestication-related genetic bottleneck and decipher the genetic history of wild populations. We provide evidence of ancestral adaptations for seed coat color crypsis, estimate the impact of environment on genetic structure and trait values, and demonstrate variation between wild and cultivated accessions for agronomic properties. A resource of genotyped, association mapping progeny functionally links the wild and cultivated gene pools and is an essential resource chickpea for improvement, while our methods inform collection of other wild crop progenitor species

International Journal of Molecular Sciences, 2019
2 of 33 chlorophyll catabolism. We tested the wild type and green cotyledon lines for components ... more 2 of 33 chlorophyll catabolism. We tested the wild type and green cotyledon lines for components of adaptations to dry environments and traits linked to agronomic performance in different experimental systems and different levels of water availability. We found that the plant processes linked to disrupted CaStGR1 gene did not functionality affect transpiration efficiency or water usage. Photosynthetic pigments in grains, including provitaminogenic carotenoids important for human nutrition, were 2-3-fold higher in the stay-green type. Agronomic performance did not appear to be correlated with the presence/absence of the stay-green allele. We conclude that allelic variation in chickpea CaStGR1 does not compromise traits linked to environmental adaptation and agronomic performance, and is a promising genetic technology for biofortification of provitaminogenic carotenoids in chickpea.

Nature communications, Feb 13, 2018
Domesticated species are impacted in unintended ways during domestication and breeding. Changes i... more Domesticated species are impacted in unintended ways during domestication and breeding. Changes in the nature and intensity of selection impart genetic drift, reduce diversity, and increase the frequency of deleterious alleles. Such outcomes constrain our ability to expand the cultivation of crops into environments that differ from those under which domestication occurred. We address this need in chickpea, an important pulse legume, by harnessing the diversity of wild crop relatives. We document an extreme domestication-related genetic bottleneck and decipher the genetic history of wild populations. We provide evidence of ancestral adaptations for seed coat color crypsis, estimate the impact of environment on genetic structure and trait values, and demonstrate variation between wild and cultivated accessions for agronomic properties. A resource of genotyped, association mapping progeny functionally links the wild and cultivated gene pools and is an essential resource chickpea for im...

BMC genomics, Jan 22, 2014
As our world becomes warmer, agriculture is increasingly impacted by rising soil salinity and und... more As our world becomes warmer, agriculture is increasingly impacted by rising soil salinity and understanding plant adaptation to salt stress can help enable effective crop breeding. Salt tolerance is a complex plant phenotype and we know little about the pathways utilized by naturally tolerant plants. Legumes are important species in agricultural and natural ecosystems, since they engage in symbiotic nitrogen-fixation, but are especially vulnerable to salinity stress. Our studies of the model legume Medicago truncatula in field and greenhouse settings demonstrate that Tunisian populations are locally adapted to saline soils at the metapopulation level and that saline origin genotypes are less impacted by salt than non-saline origin genotypes; these populations thus likely contain adaptively diverged alleles. Whole genome resequencing of 39 wild accessions reveals ongoing migration and candidate genomic regions that assort non-randomly with soil salinity. Consistent with natural selec...

PloS one, 2016
High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanism... more High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with loca...

Domesticated species are impacted in unintended ways during domestication and breeding. Changes i... more Domesticated species are impacted in unintended ways during domestication and breeding. Changes in the nature and intensity of selection impart genetic drift, reduce diversity, and increase the frequency of deleterious alleles. Such outcomes constrain our ability to expand the cultivation of crops into environments that differ from those under which domestication occurred. We address this need in chickpea, an important pulse legume, by harnessing the diversity of wild crop relatives. We document an extreme domestication-related genetic bottleneck and decipher the genetic history of wild populations. We provide evidence of ancestral adaptations for seed coat color crypsis, estimate the impact of environment on genetic structure and trait values, and demonstrate variation between wild and cultivated accessions for agronomic properties. A resource of genotyped, association mapping progeny functionally links the wild and cultivated gene pools and is an essential resource chickpea for im...

Chickpea (Cicer arietinum L.) production in arid regions, such as those predominant in Pakistan, ... more Chickpea (Cicer arietinum L.) production in arid regions, such as those predominant in Pakistan, faces immense challenges of drought and heat stress. Addressing these challenges is made more difficult by the lack of genetic and phenotypic characterization of available cultivated varieties and breeding materials. Genotyping-by-sequencing offers a rapid and cost-effective means to identify genome-wide nucleotide variation in crop germplasm. When combined with extended crop phenotypes deduced from climatic variation at sites of collection, the data can predict which portions of genetic variation might have roles in climate resilience. Here we use 8113 single nucleotide polymorphism markers to determine genetic variation and compare population structure within a previously uncharacterized collection of 77 landraces and 5 elite cultivars, currently grown in situ on farms throughout the chickpea growing regions of Pakistan. The compiled landraces span a striking aridity gradient into the Thal Desert of the Punjab. Despite low levels of variation across the collection and limited genetic structure, we found some differentiation between accessions from arid, semiarid, irrigated, and coastal areas. In a subset of 232 markers, we found evidence of differentiation along gradients of elevation and isothermality. Our results highlight the utility of exploring large germplasm collections for nucleotide variation associated with environmental extremes, and the use of such data to nominate germplasm accessions with the potential to improve crop drought tolerance and other environmental traits.

High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanism... more High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salin-ity and to test the potential mechanisms involved we measured two aspects of plant performance , reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater bio-mass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is

Background: As our world becomes warmer, agriculture is increasingly impacted by rising soil sali... more Background: As our world becomes warmer, agriculture is increasingly impacted by rising soil salinity and understanding plant adaptation to salt stress can help enable effective crop breeding. Salt tolerance is a complex plant phenotype and we know little about the pathways utilized by naturally tolerant plants. Legumes are important species in agricultural and natural ecosystems, since they engage in symbiotic nitrogen-fixation, but are especially vulnerable to salinity stress. Results: Our studies of the model legume Medicago truncatula in field and greenhouse settings demonstrate that Tunisian populations are locally adapted to saline soils after controlling for deme genetic quality and that saline origin genotypes are less impacted by salt than non-saline origin genotypes; these populations thus likely contain adaptively diverged alleles. Whole genome resequencing of 39 wild accessions reveals ongoing migration and candidate genomic regions that assort non-randomly with soil salinity. Consistent with natural selection acting at these sites, saline alleles are typically rare in the range-wide species' gene pool and are also typically derived relative to the sister species M. littoralis. Candidate regions for adaptation contain genes that regulate physiological acclimation to salt stress, such as abscisic acid and jasmonic acid signaling, including a novel salt-tolerance candidate orthologous to the uncharacterized gene AtCIPK21. Unexpectedly, these regions also contain biotic stress genes and flowering time pathway genes. We show that flowering time is differentiated between saline and non-saline populations and may allow salt stress escape.
Conclusions: This work nominates multiple potential pathways of adaptation to naturally stressful environments in a model legume. These candidates point to the importance of both tolerance and avoidance in natural legume populations. We have uncovered several promising targets that could be used to breed for enhanced salt tolerance in crop legumes to enhance food security in an era of increasing soil salinization.

● Premise of the study: Seedling establishment and survival are highly sensitive to soil salinity... more ● Premise of the study: Seedling establishment and survival are highly sensitive to soil salinity and plants that evolved in saline environments are likely to express traits that increase fitness in those environments. Such traits are of ecological interest and they may have practical value for improving salt tolerance in cultivated species. We examined responses to soil salinity and tested potential mechanisms of salt tolerance in Medicago truncatula, using genotypes that originated from natural populations occurring on saline and non-saline soils.
● Methods: Germination and seedling responses were quantified and/or compared between saline and non-saline origin genotypes. Germination treatments included a range of NaCl concentrations in both offspring and parental environments. Seedling treatments included NaCl, ABA, and KCl.
● Key results: Saline origin genotypes displayed greater salinity tolerance for germination and seedling traits relative to non-saline origin genotypes. Moreover, we observed population specific differences for the effects of salinity on time to germination and for the impact of parental environment on germination rates. ABA and NaCl treatments had similar negative effects on root growth, although relative sensitivities differed, with saline population less sensitive to NaCl and more sensitive to ABA compared to their non-saline counterparts.
Conclusions: Our results demonstrate population differentiation for germination and seedling growth traits under saline conditions among populations derived from saline and non-saline environments. These observations are consistent with a syndrome of adaptations for salinity tolerance during early plant development, including traits that are common among saline environments and those that are idiosyncratic to local populations.
American Journal of Botany, 2014

BMC genomics, 2014
As our world becomes warmer, agriculture is increasingly impacted by rising soil salinity and und... more As our world becomes warmer, agriculture is increasingly impacted by rising soil salinity and understanding plant adaptation to salt stress can help enable effective crop breeding. Salt tolerance is a complex plant phenotype and we know little about the pathways utilized by naturally tolerant plants. Legumes are important species in agricultural and natural ecosystems, since they engage in symbiotic nitrogen-fixation, but are especially vulnerable to salinity stress. Our studies of the model legume Medicago truncatula in field and greenhouse settings demonstrate that Tunisian populations are locally adapted to saline soils at the metapopulation level and that saline origin genotypes are less impacted by salt than non-saline origin genotypes; these populations thus likely contain adaptively diverged alleles. Whole genome resequencing of 39 wild accessions reveals ongoing migration and candidate genomic regions that assort non-randomly with soil salinity. Consistent with natural selec...

The Plant …, Jan 1, 2010
Genome-wide association studies rely upon segregating natural genetic variation, particularly the... more Genome-wide association studies rely upon segregating natural genetic variation, particularly the patterns of polymorphism and correlation between adjacent markers. To facilitate association studies in the model legume Medicago truncatula, we present a genome-scale polymorphism scan using existing Affymetrix microarrays. We develop and validate a method that uses a simple information-criteria algorithm to call polymorphism from microarray data without reliance on a reference genotype. We genotype 12 inbred M. truncatula lines sampled from four wild Tunisian populations and find polymorphisms at approximately 7% of features, comprising 31 419 probes. Only approximately 3% of these markers assort by population, and of these only 10% differentiate between populations from saline and non-saline sites. Fifty-two differentiated probes with unique genome locations correspond to 18 distinct genome regions. Sanger resequencing was used to characterize a subset of maker loci and develop a single nucleotide polymorphism (SNP)-typing assay that confirmed marker assortment by habitat in an independent sample of 33 individuals from the four populations. Genome-wide linkage disequilibrium (LD) extends on average for approximately 10 kb, falling to background levels by approximately 500 kb. A similar range of LD decay was observed in the 18 genome regions that assort by habitat; these LD blocks delimit candidate genes for local adaptation, many of which encode proteins with predicted functions in abiotic stress tolerance and are targets for functional genomic studies. Tunisian M. truncatula populations contain substantial amounts of genetic variation that is structured in relatively small LD blocks, suggesting a history of migration and recombination. These populations provide a strong resource for genome-wide association studies.

Plant Cell, Tissue and …, Jan 1, 2007
We developed an alternative methodology for in vitro selection of transgenic Medicago truncatula ... more We developed an alternative methodology for in vitro selection of transgenic Medicago truncatula cv. Jemalong plants using a bifunctional construct in which the coding sequences for the green fluorescent protein (GFP) and the b-glucuronidase protein (GUS) are fused. An Agrobacterium-mediated transformation protocol was used followed by regeneration via somatic embryogenesis in the dark, to avoid the synthesis and the consequent autofluorescence of chlorophyll. This method is a clear advantage over antibiotic and herbicide selection in which survival of non-transformed tissue is commonly reported, with the reassurance that all the somatic embryos selected as GFP positive are transformed. This was subsequently corroborated by the detection of GUS activity in leaves, stems and roots of the regenerated plants. Without antibiotic selection, and performing the embryo induction in the dark, it was possible to attest the advantage of using GFP as an in vivo detectable reporter for early embryo selection. The fusion with the GUS coding sequence provided additional evidence for the transformation of the previously selected embryos.
Uploads
Papers by Matilde Cordeiro
Conclusions: This work nominates multiple potential pathways of adaptation to naturally stressful environments in a model legume. These candidates point to the importance of both tolerance and avoidance in natural legume populations. We have uncovered several promising targets that could be used to breed for enhanced salt tolerance in crop legumes to enhance food security in an era of increasing soil salinization.
● Methods: Germination and seedling responses were quantified and/or compared between saline and non-saline origin genotypes. Germination treatments included a range of NaCl concentrations in both offspring and parental environments. Seedling treatments included NaCl, ABA, and KCl.
● Key results: Saline origin genotypes displayed greater salinity tolerance for germination and seedling traits relative to non-saline origin genotypes. Moreover, we observed population specific differences for the effects of salinity on time to germination and for the impact of parental environment on germination rates. ABA and NaCl treatments had similar negative effects on root growth, although relative sensitivities differed, with saline population less sensitive to NaCl and more sensitive to ABA compared to their non-saline counterparts.
Conclusions: Our results demonstrate population differentiation for germination and seedling growth traits under saline conditions among populations derived from saline and non-saline environments. These observations are consistent with a syndrome of adaptations for salinity tolerance during early plant development, including traits that are common among saline environments and those that are idiosyncratic to local populations.
Conclusions: This work nominates multiple potential pathways of adaptation to naturally stressful environments in a model legume. These candidates point to the importance of both tolerance and avoidance in natural legume populations. We have uncovered several promising targets that could be used to breed for enhanced salt tolerance in crop legumes to enhance food security in an era of increasing soil salinization.
● Methods: Germination and seedling responses were quantified and/or compared between saline and non-saline origin genotypes. Germination treatments included a range of NaCl concentrations in both offspring and parental environments. Seedling treatments included NaCl, ABA, and KCl.
● Key results: Saline origin genotypes displayed greater salinity tolerance for germination and seedling traits relative to non-saline origin genotypes. Moreover, we observed population specific differences for the effects of salinity on time to germination and for the impact of parental environment on germination rates. ABA and NaCl treatments had similar negative effects on root growth, although relative sensitivities differed, with saline population less sensitive to NaCl and more sensitive to ABA compared to their non-saline counterparts.
Conclusions: Our results demonstrate population differentiation for germination and seedling growth traits under saline conditions among populations derived from saline and non-saline environments. These observations are consistent with a syndrome of adaptations for salinity tolerance during early plant development, including traits that are common among saline environments and those that are idiosyncratic to local populations.